
Northeastern University Northeastern University
Systems Security Lab

NEU SECLAB

VirtualSwindle: An Automated Attack Against
In-App Billing on Android

ASIACCS 2014
Collin Mulliner, William Robertson, Engin Kirda

{crm,wkr,ek}[at]ccs.neu.edu

2
Mulliner, Robertson, Kirda “VirtualSwindle” ASIA CCS 2014

NEU SECLAB

Mobile Apps

3
Mulliner, Robertson, Kirda “VirtualSwindle” ASIA CCS 2014

NEU SECLAB

Mobile Apps

Apps make the platform, without Apps nobody buys devices

Over 1 Million Apps in Google Play

4
Mulliner, Robertson, Kirda “VirtualSwindle” ASIA CCS 2014

NEU SECLAB

Mobile Apps → Money

 Buy App
– Fixed price
– One-time payment (when you buy the App)

5
Mulliner, Robertson, Kirda “VirtualSwindle” ASIA CCS 2014

NEU SECLAB

Mobile Apps → Money

 Buy App
– Fixed price
– One-time payment (when you buy the App)

 Buy items + services within the application
– Multiple purchases → multiple payments
– Google calls this “In-App Billing”

6
Mulliner, Robertson, Kirda “VirtualSwindle” ASIA CCS 2014

NEU SECLAB

In-App Billing

 Android platform service
– Built into the Play Store
– API on device

 Google
– Takes care of payment processing, handles refunds, ...
– Keeps 30% of all sales

 Developer
– Configures items in Google Play Store
– Adds payment functionality to his App

 Both make significant revenue through In-App Billing

7
Mulliner, Robertson, Kirda “VirtualSwindle” ASIA CCS 2014

NEU SECLAB

In-App Billing Usecases

 Remove ads

 Full version → more features

 Games
– Levels
– Coins

 Application specific
– Features
– Content

8
Mulliner, Robertson, Kirda “VirtualSwindle” ASIA CCS 2014

NEU SECLAB

In-App Billing Pricing

 examples

9
Mulliner, Robertson, Kirda “VirtualSwindle” ASIA CCS 2014

NEU SECLAB

In-App Billing Pricing

 examples

10
Mulliner, Robertson, Kirda “VirtualSwindle” ASIA CCS 2014

NEU SECLAB

Who uses In-App Billing?

11
Mulliner, Robertson, Kirda “VirtualSwindle” ASIA CCS 2014

NEU SECLAB

Who uses In-App Billing?

 Temple Run
+100M installs

 Angry Birds
+100M installs

 Everybody!
– developers find possibilities

12
Mulliner, Robertson, Kirda “VirtualSwindle” ASIA CCS 2014

NEU SECLAB

Attacking In-App Billing

 Significant loss if In-App Billing can be bypassed

 Developers should have high incentive to protect their Apps

 Questions:
– Can In-App Billing be bypassed?

• Without reverse engineering and patching App?

– Are Apps hardened against attacks?
• What kind of hardening?

13
Mulliner, Robertson, Kirda “VirtualSwindle” ASIA CCS 2014

NEU SECLAB

Attacks are possible: VirtualSwindle

 Demo

14
Mulliner, Robertson, Kirda “VirtualSwindle” ASIA CCS 2014

NEU SECLAB

Contributions

 First to investigate In-App Billing security
– Systematic study

 Created VirtualSwindle an automatic attack against In-App Billing
– Attack is generic, independent from App

 Developed Dynamic Dalvik Instrumentation (DDI)
– Allows modifying Dalvik Apps at runtime

 Application robustness study on 85 Apps
– 60% of Apps can be automatically cracked

 Propose hardening scheme for In-App Billing
– Practical solutions that target the App code itself

15
Mulliner, Robertson, Kirda “VirtualSwindle” ASIA CCS 2014

NEU SECLAB

In-App Billing: Overview
Google's Play Service

App backend (optional)

Billing API (RPC)

Device

16
Mulliner, Robertson, Kirda “VirtualSwindle” ASIA CCS 2014

NEU SECLAB

In-App Billing: Purchase Process

 App and Play Store (Market App) exchange messages
– App tells Play Store which item is to be purchased

17
Mulliner, Robertson, Kirda “VirtualSwindle” ASIA CCS 2014

NEU SECLAB

In-App Billing: Purchase Process

 Play Store asks user to complete purchase

18
Mulliner, Robertson, Kirda “VirtualSwindle” ASIA CCS 2014

NEU SECLAB

In-App Billing: Purchase Process

 Play Store notifies App that purchase is complete
– Sends purchase data to App

19
Mulliner, Robertson, Kirda “VirtualSwindle” ASIA CCS 2014

NEU SECLAB

How to VirtualSwindle

 Emulate the Play Store
– Reply to requests send by App
– Confirm all actions

 Play Store runs in separate process
– Communication via Binder RPC

 Communication via: sendBillingRequest()
– Replace sendBillingRequest() in

Play Store process

20
Mulliner, Robertson, Kirda “VirtualSwindle” ASIA CCS 2014

NEU SECLAB

How to VirtualSwindle

 Emulate the Play Store
– Reply to requests send by App
– Confirm all actions

 Play Store runs in separate process
– Communication via Binder RPC

 Communication via: sendBillingRequest()
– Replace sendBillingRequest() in

Play Store process

 How to replace sendBillingRequest()?
– Dynamic Dalvik Instrumentation

21
Mulliner, Robertson, Kirda “VirtualSwindle” ASIA CCS 2014

NEU SECLAB

Dynamic Dalvik Instrumentation (DDI)

 Framework to instrument Dalvik code at runtime
– Replace methods
– Load additional Dalvik code (DEX classes)

 Main idea: convert Dalvik method to JNI method
– JNI = Java Native Interface (native code)
– Core functionally of the Dalvik Virtual Machine (DVM)

22
Mulliner, Robertson, Kirda “VirtualSwindle” ASIA CCS 2014

NEU SECLAB

Dalvik Instrumentation: Overview

 Inject 'shared object' into running process
– Provides the native code (JNI methods)

 Native code interacts with the DVM
– Resolve symbols from DVM
– Call DVM functions to:

• Lookup classes and methods
• Hook method
• Call original method

Android Process

Call DVM functionality

23
Mulliner, Robertson, Kirda “VirtualSwindle” ASIA CCS 2014

NEU SECLAB

Instrumentation Code Flow (JNI only)

Hook (JNI method)

Method in App (Java)

Original method (Java)

Hook is native code only. JNI can call any Java method.

24
Mulliner, Robertson, Kirda “VirtualSwindle” ASIA CCS 2014

NEU SECLAB

Load and Run Dalvik Code

1) use DVM to install hooks

2) hook is executed (JNI)

4) run loaded Dalvik code

3) load DEX class file

25
Mulliner, Robertson, Kirda “VirtualSwindle” ASIA CCS 2014

NEU SECLAB

Instrumentation Code Flow (with Java code)

Hook (JNI method) Method in Instrument (Java)

Method in App (Java)
Instrumentation Code (Java)Load

Original method (Java)

Instrumentation code can also be written in Java.

26
Mulliner, Robertson, Kirda “VirtualSwindle” ASIA CCS 2014

NEU SECLAB

VirtualSwindle

 Hook sendBillingRequest() using DDI
– Serves as entry point

 Main logic implemented in Java
– DEX file loaded via DDI

VirtualSwindle replaces
sendBillingRequest()

27
Mulliner, Robertson, Kirda “VirtualSwindle” ASIA CCS 2014

NEU SECLAB

VirtualSwindle: Purchase Process

 VirtualSwindle notifies App that purchase is complete
– Creates fake purchase data and sends it to App

28
Mulliner, Robertson, Kirda “VirtualSwindle” ASIA CCS 2014

NEU SECLAB

VirtualSwindle: Purchase Process

 VirtualSwindle notifies App that purchase is complete
– Creates fake purchase data and sends it to App

Purchase data is signed by Play Store (private key on Play Store server)
- App checks signature to determine if purchase data is benign
- This is the only security measure for In-App Billing

29
Mulliner, Robertson, Kirda “VirtualSwindle” ASIA CCS 2014

NEU SECLAB

Bypassing the Signature Check

 Hook and replace: java.security.Signature.verify()
– Our version always returns “true”

boolean java.security.Signature.verify(byte[]) { … }

int verify(JNIEnv *env, jobject obj, jobject bytearray)
{ return 1; }

30
Mulliner, Robertson, Kirda “VirtualSwindle” ASIA CCS 2014

NEU SECLAB

Bypassing the Signature Check

 Hook and replace: java.security.Signature.verify()
– Our version always returns “true”

boolean java.security.Signature.verify(byte[]) { … }

int verify(JNIEnv *env, jobject obj, jobject bytearray)
{ return 1; }Verify() method is patched globally by instrumenting the zygote process

- zygote is the base VM process, all processes inherit changes made in zygote

31
Mulliner, Robertson, Kirda “VirtualSwindle” ASIA CCS 2014

NEU SECLAB

Robustness Study

 Selected 85 Apps that support In-App Billing
– Including many popular Apps

• Angry Birds, Temple Run
(more users → more interest in securing App?!)

 Attack Apps using VirtualSwindle
– Group Apps: cracked and not cracked

 App Analysis (disassemble and inspect)
– Code reuse (copy-paste Google's example code)
– Countermeasures
– Other interesting insights

32
Mulliner, Robertson, Kirda “VirtualSwindle” ASIA CCS 2014

NEU SECLAB

Application Analysis

 Signature verification present in application?
– Does App call Signature.verify() in billing code?

 Call to verify() not found but App was cracked
– Check for Java reflection

 Obfuscation
– Check if code was obfuscated (mangled symbol names)

 Check for network traffic
– Check for transaction details in network traffic

33
Mulliner, Robertson, Kirda “VirtualSwindle” ASIA CCS 2014

NEU SECLAB

Robustness Study: Results

 Analyzed 85 Apps

 51 Apps (60%) automatically cracked
– 7 Apps used reflection + obfuscation as defense
– 1 App did not check signature of payment data

 34 Apps not cracked
– 32 Apps implemented server side checks
– 1 App implemented the signature check in native code
– 1 App detects failed payment manipulation and blocks

 Reuse of Google's example code (easy target for RE attack)
– 38 of the vulnerable Apps
– 15 of non vulnerable Apps

34
Mulliner, Robertson, Kirda “VirtualSwindle” ASIA CCS 2014

NEU SECLAB

Countermeasures

 Server side signature verification
– Server component needs to tightly integrated into App

otherwise easy to remove
– This is a lot of additional work

35
Mulliner, Robertson, Kirda “VirtualSwindle” ASIA CCS 2014

NEU SECLAB

Countermeasures

 Server side signature verification
– Server component needs to tightly integrated into App

otherwise easy to remove
– This is a lot of additional work

 Our solution: harden on-device signature check
– Force attacker to reverse engineer and patch each

individual App

 Package standalone signature verification with App
– Obfuscate App and signature check code
– Attacker cannot simply hook “verify()”

36
Mulliner, Robertson, Kirda “VirtualSwindle” ASIA CCS 2014

NEU SECLAB

Summary

 Generic automated attack can bypassed payment

 Many Apps do not protect their payment code
– Java reflection and obfuscation do not provide protection

 Super popular applications are vulnerable too
– Angry Birds, Temple Run, …

37
Mulliner, Robertson, Kirda “VirtualSwindle” ASIA CCS 2014

NEU SECLAB

Conclusions

 Mobile Apps → Money
– In-App Billing is a major revenue source for Google and

developers

 VirtualSwindle shows that billing code is often not protected
– 60% of Apps are automatically cracked
– No reverse engineering and patching of individual App

 Developers need to understand risks
– Simple code obfuscation does not provide protection

 We show what countermeasures are effective
– Provide an additional lightweight countermeasure

Northeastern UniversityNortheastern University
Systems Security Labs

NEU SECLAB

Thank you!

Any Questions?

EOF

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

