
UNVEIL: A Large-Scale, Automated Approach to Detecting Ransomware

Amin Kharraz
Northeastern University
mkharraz@ccs.neu.edu

Sajjad Arshad
Northeastern University

arshad@ccs.neu.edu

Collin Mulliner
Northeastern University

collin@mulliner.org

William Robertson
Northeastern University

wkr@ccs.neu.edu

Engin Kirda
Northeastern University

ek@ccs.neu.edu

Abstract

Although the concept of ransomware is not new (i.e.,
such attacks date back at least as far as the 1980s), this
type of malware has recently experienced a resurgence
in popularity. In fact, in the last few years, a number
of high-profile ransomware attacks were reported, such
as the large-scale attack against Sony that prompted the
company to delay the release of the film “The Interview.”
Ransomware typically operates by locking the desktop
of the victim to render the system inaccessible to the
user, or by encrypting, overwriting, or deleting the user’s
files. However, while many generic malware detection
systems have been proposed, none of these systems have
attempted to specifically address the ransomware detec-
tion problem.

In this paper, we present a novel dynamic analysis sys-
tem called UNVEIL that is specifically designed to de-
tect ransomware. The key insight of the analysis is that
in order to mount a successful attack, ransomware must
tamper with a user’s files or desktop. UNVEIL automat-
ically generates an artificial user environment, and de-
tects when ransomware interacts with user data. In par-
allel, the approach tracks changes to the system’s desk-
top that indicate ransomware-like behavior. Our evalua-
tion shows that UNVEIL significantly improves the state
of the art, and is able to identify previously unknown
evasive ransomware that was not detected by the anti-
malware industry.

1 Introduction

Malware continues to remain one of the most important
security threats on the Internet today. Recently, a specific
form of malware called ransomware has become very
popular with cybercriminals. Although the concept of
ransomware is not new – such attacks were registered as
far back as the end of the 1980s – the recent success of
ransomware has resulted in an increasing number of new

families in the last few years [7, 20, 21, 44, 46]. For ex-
ample, CryptoWall 3.0 made headlines around the world
as a highly profitable ransomware family, causing an es-
timated $325M in damages [45]. As another example,
the Sony ransomware attack [27] received large media
attention, and the U.S. government even took the official
position that North Korea was behind the attack.

Ransomware operates in many different ways, from
simply locking the desktop of the infected computer to
encrypting all of its files. Compared to traditional mal-
ware, ransomware exhibits behavioral differences. For
example, traditional malware typically aims to achieve
stealth so it can collect banking credentials or keystrokes
without raising suspicion. In contrast, ransomware be-
havior is in direct opposition to stealth, since the entire
point of the attack is to openly notify the user that she is
infected.

Today, an important enabler for behavior-based mal-
ware detection is dynamic analysis. These systems ex-
ecute a captured malware sample in a controlled envi-
ronment, and record its behavior (e.g., system calls, API
calls, and network traffic). Unfortunately, malware de-
tection systems that focus on stealthy malware behav-
ior (e.g., suspicious operating system functionality for
keylogging) might fail to detect ransomware because
this class of malicious code engages in activity that ap-
pears similar to benign applications that use encryption
or compression. Furthermore, these systems are cur-
rently not well-suited for detecting the specific behaviors
that ransomware engages in, as evidenced by misclassifi-
cations of ransomware families by AV scanners [10, 39].

In this paper, we present a novel dynamic analysis sys-
tem that is designed to analyze and detect ransomware
attacks and model their behaviors. In our approach, the
system automatically creates an artificial, realistic exe-
cution environment and monitors how ransomware inter-
acts with that environment. Closely monitoring process
interactions with the filesystem allows the system to pre-
cisely characterize cryptographic ransomware behavior.

In parallel, the system tracks changes to the computer’s
desktop that indicates ransomware-like behavior. The
key insight is that in order to be successful, ransomware
will need to access and tamper with a victim’s files or
desktop. Our automated approach, called UNVEIL, al-
lows the system to analyze many malware samples at a
large scale, and to reliably detect and flag those that ex-
hibit ransomware-like behavior. In addition, the system
is able to provide insights into how the ransomware oper-
ates, and how to automatically differentiate between dif-
ferent classes of ransomware.

We implemented a prototype of UNVEIL in Windows
on top of the popular open source malware analysis
framework Cuckoo Sandbox [13]. Our system is imple-
mented through custom Windows kernel drivers that pro-
vide monitoring capabilities for the filesystem. Further-
more, we added components that run outside the sandbox
to monitor the user interface of the target computer sys-
tem.

We performed a long-term study analyzing 148,223
recent general malware samples in the wild. Our large-
scale experiments show that UNVEIL was able to cor-
rectly detect 13,637 ransomware samples from multiple
families in live, real-world data feeds with no false pos-
itives. Our evaluation also suggests that current mal-
ware analysis systems may not yet have accurate behav-
ioral models to detect different classes of ransomware at-
tacks. For example, the system was able to correctly de-
tect 7,572 ransomware samples that were previously un-
known and undetected by traditional AVs, but belonged
to modern file locker ransomware families. UNVEIL was
also able to detect a new type of ransomware that had not
previously been reported by any security company. This
ransomware also did not show any malicious activity in
a modern sandboxing technology provided by a well-
known anti-malware company, while showing heavy file
encryption activity when analyzed by UNVEIL.

The high detection rate of our approach suggests that
UNVEIL can complement current malware analysis sys-
tems to quickly identify new ransomware samples in the
wild. UNVEIL can be easily deployed on any malware
analysis system by simply attaching to the filesystem
driver in the analysis environment.

In summary, this paper makes the following contribu-
tions:

• We present a novel technique to detect ransomware
known as file lockers that targets files stored on a
victim’s computer. Our technique is based on mon-
itoring system-wide filesystem accesses in com-
bination with the deployment of automatically-
generated artificial user environments for triggering
ransomware.

• We present a novel technique to detect ransomware

known as screen lockers. Such ransomware pre-
vents access to the computer system itself. Our
technique is based on detecting locked desktops us-
ing dissimilarity scores of screenshots taken from
the analysis system’s desktop before, during, and
after executing the malware sample.

• We performed a large-scale evaluation to show that
our approach can effectively detect ransomware.
We automatically detected and verified 13,637 ran-
somware samples from a dataset of 148,223 re-
cent general malware. In addition, we found one
previously unknown ransomware sample that does
not belong to any previously reported family. Our
evaluation demonstrates that our technique works
well in practice (achieving a true positive [TP] rate
96.3% at zero false positives [FPs]), and is useful in
automatically identifying ransomware samples sub-
mitted to analysis and detection systems.

The rest of the paper is structured as follows. In Sec-
tion 2, we briefly present background information and
explain different classes of ransomware attacks. In Sec-
tion 3, we describe the architecture of UNVEIL and ex-
plain our detection approaches for multiple types of ran-
somware attacks. In Section 4, we provide more de-
tails about our dynamic analysis environment. In Sec-
tion 5, we present the evaluation results. Limitations of
the approach are discussed in Section 6, while Section 7
presents related work. Finally, Section 8 concludes the
paper.

2 Background

Ransomware, like other classes of malware, uses a num-
ber of strategies to evade detection, propagate, and at-
tack users. For example, it can perform multi-infection
or process injection, exfiltrate the user’s information to
a third party, encrypt files, and establish secure com-
munication with C&C servers. Our detection approach
assumes that ransomware samples can and will use all
of the techniques that other malware samples may use.
In addition, our system assumes that successful ran-
somware attacks perform one or more of the following
activities.
Persistent desktop message. After successfully per-
forming a ransomware infection, the malicious program
typically displays a message to the victim. This “ran-
som note” informs the users that their computer has been
“locked” and provides instructions on how to make a ran-
som payment to restore access. This ransom message can
be generated in different ways. A popular technique is to
call dedicated API functions (e.g., CreateDesktop())
to create a new desktop and make it the default config-

2

uration to lock the victim out of the compromised sys-
tem. Malware writers can also use HTML or create
other forms of persistent windows to display this mes-
sage. Displaying a persistent desktop message is a clas-
sic action in many ransomware attacks.
Indiscriminate encryption and deletion of the user’s
private files. A crypto-style ransomware attack lists the
victim’s files and aggressively encrypts any private files
it discovers. Access is restricted by withholding the de-
cryption key. Encryption keys can be generated locally
by the malware on the victim’s computer, or remotely
on C&C servers, and then delivered to the compromised
computer. An attacker can use customized destructive
functions, or Windows API functions to delete the origi-
nal user’s files. The attacker can also overwrite files with
the encrypted version, or use secure deletion via the Win-
dows Secure Deletion API.
Selective encryption and deletion of the user’s pri-
vate files based on certain attributes (e.g., size, date
accessed, extension). In order to avoid detection, a sig-
nificant number of ransomware samples encrypt a user’s
private files selectively. In the simplest form, the ran-
somware sample can list the files based on the access
date. In more sophisticated scenarios, the malware could
also open an application (e.g., word.exe) and list re-
cently accessed files. The sample can also inject mali-
cious code into any Windows application to obtain this
type of information (e.g., directly reading process mem-
ory).

In this work, we address all of these scenarios where
an adversary has already compromised a system, and is
able to launch arbitrary ransomware-related operations
on the user’s files or desktop.

3 UNVEIL Design

In this section, we describe our techniques for detect-
ing multiple classes of ransomware attacks. We refer the
reader to Section 4 for details on the implementation de-
tails of the prototype.

3.1 Detecting File Lockers
We first describe why our system creates a unique, ar-
tificial user environment in each malware run. We then
present the design of the filesystem activity monitor and
describe how UNVEIL uses the output of the filesystem
monitor to detect ransomware.

3.1.1 Generating Artificial User Environments

Protecting malware analysis environments against finger-
printing techniques is non-trivial in a real-world deploy-
ment. Sophisticated malware authors exploit static fea-

tures inside analysis systems (e.g., name of a computer)
and launch reconnaissance-based attacks [31] to finger-
print both public and private malware analysis systems.

The static features of analysis environments can be
viewed as the Achilles’ heel of malware analysis sys-
tems. One static feature that can have a significant im-
pact on the effectiveness of the malware analysis systems
is the user data that can be effectively used to fingerprint
the analysis environment. That is, even on bare-metal
environments where classic tricks such as virtualization
checks are not possible, an unrealistic looking user envi-
ronment can be a telltale sign that the code is running in
a malware analysis system.

Intuitively, a possible approach to address such re-
connaissance attacks is to build the user environment in
such a way that the user data is valid, real, and non-
deterministic in each malware run. These automatically-
generated user environments serve as an “enticing target”
to encourage ransomware to attack the user’s data while
at the same time preventing the possibility of being rec-
ognized by adversaries.

In practice, generating a user environment is a non-
trivial problem, especially if this is to be done automati-
cally. This is because the content generator should not al-
low the malware author to fingerprint the automatically-
generated user content located in the analysis environ-
ment, and also determine that it does not belong to a real
user. We elaborate on how we automatically generate
an artificial – yet realistic – user environment for ran-
somware in each malware run in Section 4.1.

3.1.2 Filesystem Activity Monitor

The filesystem monitor in UNVEIL has direct access to
data buffers involved in I/O requests, giving the system
full visibility into all filesystem modifications. Each I/O
operation contains the process name, timestamp, oper-
ation type, filesystem path and the pointers to the data
buffers with the corresponding entropy information in
read/write requests. The generation of I/O requests hap-
pens at the lowest possible layer to the filesystem. For ex-
ample, there are multiple ways to read, write, or list files
in user-/kernel-mode, but all of these functions are ulti-
mately converted to a sequence of I/O requests. When-
ever a user thread invokes an I/O API, an I/O request is
generated and is passed to the filesystem driver. Figure 1
shows a high-level design of UNVEIL in the Windows
environment.

UNVEIL’s monitor sets callbacks on all I/O requests
to the filesystem generated on behalf of any user-mode
processes. We note that for UNVEIL operations, it is de-
sirable to only set one callback per I/O request for perfor-
mance reasons, and that this also maintains full visibility
into I/O operations. In UNVEIL, user-mode process in-

3

teractions with the filesystem are formalized as access
patterns. We consider access patterns in terms of I/O
traces, where a trace T is a sequence of ti such that

ti = 〈P,F,O,E〉 ,
P is the set of user-mode processes,
F is the set of available files,
O is the set of I/O operations, and
E is the entropy of read or write data buffers.

For all of the file locker ransomware samples that we
studied, we empirically observed that these samples is-
sue I/O traces that exhibit distinctive, repetitive patterns.
This is due to the fact that these samples each use a sin-
gle, specific strategy to deny access to the user’s files.
This attack strategy is accurately reflected in the form of
I/O access patterns that are repeated for each file when
performing the attack. Consequently, these I/O access
patterns can be extracted as a distinctive I/O fingerprint
for a particular family. We note that our approach mainly
considers write or delete requests. We elaborate on ex-
tracting I/O access patterns per file in Section 3.1.2.

I/O Data Buffer Entropy. For every read and write re-
quest to a file captured in an I/O trace, UNVEIL computes
the entropy of the corresponding data buffer. Comparing
the entropy of read and write requests to and from the
same file offset serves as an excellent indicator of crypto-
ransomware behavior. This is due to the common strat-
egy to read in the original file data, encrypt it, and over-
write the original data with the encrypted version. The
system uses Shannon entropy [30] for this computation.
In particular, assuming a uniform random distribution of
bytes in a data block d, we have

H (d) =−
n

∑
i=1

log2 n
n

.

Constructing Access Patterns. For each execution,
after UNVEIL generates I/O access traces for the sam-
ple, it sorts the I/O access requests based on file names
and request timestamps. This allows the system to ex-
tract the I/O access sequence for each file in a given run,
and check which processes accessed each file. The key
idea is that after sorting the I/O access requests per file,
repetition can be observed in the way I/O requests are
generated on behalf of the malicious process.

The particular detection criterion used by the system
to detect ransomware samples is to identify write and
delete operations in I/O sequences in each malware run.
In a successful ransomware attack, the malicious process
typically aims to encrypt, overwrite, or delete user files
at some point during the attack. In UNVEIL, these I/O

Calculate
Entropy

Identify
Process

I/O Type

I/O Scheduler

FileSystem
Driver

Physical
Device

I/O
Requests

I/O Monitor
EXIT

file’s data Buffer

UNVEIL

User Mode
Kernel Mode

I/O Monitor
ENTER Record I/O

Request

Identify
File OP

. . .

 Process 1 Process 2 Process 3 Process N

read write delete write

I/O Access Monitor

Figure 1: Overview of the design of I/O access monitor in UN-
VEIL. The module monitors system-wide filesystem accesses
of user-mode processes. This allows UNVEIL to have full visi-
bility into interactions with user files.

request patterns raise an alarm, and are detected as suspi-
cious filesystem activity. We studied different file locker
ransomware samples across different ransomware fami-
lies. Our analysis shows that although these attacks can
be very different in their attack strategies (e.g., evasion
techniques, key generation, key management, connect-
ing to C&C servers), they can be categorized into three
main classes of attacks based on their access requests.

Figure 2 shows the high-level access patterns for mul-
tiple ransomware families we studied during our experi-
ments. For example, the access pattern shown to the left
is indicative of Cryptolocker variants that have varying
key lengths and desktop locking techniques. However,
its access pattern remains constant with respect to fam-
ily variants. We observed the same I/O activity for sam-
ples in the CryptoWall family as well. While these fam-
ilies are identified as two different ransomware families,
since they use the same encryption functions to encrypt
files (i.e., the Microsoft CryptoAPI), they have similar
I/O patterns when they attack user files.

As another example, in FileCoder family, the ran-
somware first creates a new file, reads data from a vic-
tim’s file, generates an encrypted version of the original
data, writes the encrypted data buffer to the newly gener-
ated file, and simply unlinks the original user’s file (See
Figure 2.2). In this class of file locker ransomware, the
malware does not wipe the original file’s data from the
disk. For attack approaches like this, victims have a high
chance of recovering their data without paying the ran-
som. In the third approach (Figure 2.3), however, the
ransomware creates a new encrypted file based on the
original file’s data and then securely deletes the orig-
inal file’s data using either standard Windows APIs or
custom overwriting implementations (e.g., such as Cryp-

4

overwrite

Open

Write

Close

read
File x

Read

File x

Open

Read

Close

File x.locked

Open

Write

Close

encrypt delete
File x

Open

Delete

Close

read
File x

Open

Read

Close

File x.locked

Open

Write

Close

encrypt overwrite
File x

Open

Read

Close

Write

(2)(1) (3)

Figure 2: Strategies differ across ransomware families with respect to I/O access patterns. (1) Attacker overwrites the users’ file
with an encrypted version; (2) Attacker reads, encrypts and deletes files without wiping them from storage; (3) Attacker reads,
creates a new encrypted version, and securely deletes the original files by overwriting the content.

Vault family).

3.2 Detecting Screen Lockers

The second core component of UNVEIL is aimed at de-
tecting screen locker ransomware. The key insight be-
hind this component is that the attacker must display
a ransom note to the victim in order to receive a pay-
ment. In most cases, the message is prominently dis-
played, covering a significant part, or all, of the display.
As this ransom note is a virtual invariant of ransomware
attacks, UNVEIL aims to automatically detect the display
of such notes.

The approach adopted by UNVEIL to detect screen
locking ransomware is to monitor the desktop of the vic-
tim machine, and to attempt to detect the display of a
ransom note. Similar to Grier et al. [15], we take au-
tomatic screenshots of the analysis desktop before and
after the sample is executed. The screenshots are cap-
tured from outside of the dynamic analysis environment
to prevent potential tampering by the malware. This se-
ries of screenshots is analyzed and compared using im-
age analysis methods to determine if a large part of the
screen has suddenly changed between captures. How-
ever, smaller changes in the image such as the location
of the mouse pointer, current date and time, new desk-
top icons, windows, and visual changes in the task bar
should be rejected as inconsequential.

In UNVEIL, we measure the structural similarity
(SSIM) [49] of two screenshots – before and after sample
execution – by comparing local patterns of pixel intensi-
ties in terms of both luminance and contrast as well as the
structure of the two images. Extracting structural infor-
mation is based on the observation that pixels have strong
inter-dependencies – especially when they are spatially
close. These dependencies carry information about the
structure of the objects in the image. After a successful
ransomware attack, the display of the ransom note often

results in automatically identifiable changes in the struc-
tural information of the screenshot (e.g., a large rectan-
gular object covers a large part of the desktop). There-
fore, the similarity of the pre- and post-attack images de-
creases significantly, and can be used as an indication of
ransomware.

In order to avoid false positives, UNVEIL only
takes screenshots resulting from persistent changes (i.e.,
changes that cannot be easily dismissed through user
interaction). The system first removes such transient
changes (e.g., by automatically closing open windows)
before taking screenshots of the desktop. Using this pre-
processing step, ransomware-like applications that are
developed for other purposes such as fake AV are safely
categorized as non-ransomware samples.

UNVEIL also extracts the text within the area where
changes in the structure of the image has occurred. The
system extracts the text inside the selected area and
searches for specific keywords that are highly correlated
with ransom notes (e.g.,<lock, encrypt, desktop,

decryption, key>).
Given two screenshots X and Y , we define the struc-

tural similarity index of the image contents of local win-
dows x j and y j as

LocalSim(x j,y j) =
(2µxµy + c1)(2σxy + c2)(

µ2
x +µ2

y + c1
)(

σ2
x +σ2

y + c2
)

where µx and µy are the mean intensity of x j and y j, and
σx and σy are the standard deviation as an estimate of
x j and y j contrast and σxy is the covariance of x j and
y j. The local window size to compare the content of two
images was set 8× 8. c1 and c2 are division stabilizer
in the SSIM index formula [49]. We define the overall
similarity between the two screenshots X and Y as the
arithmetic mean of the similarity of the image contents
x j and y j at the jth local window where M is the number

5

of local windows of X and Y :

ImgSim(X ,Y) =
1
M

M

∑
j=1

LocalSim(x j,y j) .

Since the overall similarity is always on [0,1], the dis-
tance between X and Y is simply defined as

Dist(X ,Y) = 1− ImgSim(X ,Y) .

Finally, we define a similarity threshold τsim such that
UNVEIL considers the sample a potential screen locking
ransomware if

Dist(X ,Y)> τsim.

UNVEIL then extracts the text within the image and
searches for ransomware-related words within the mod-
ified area. Applying the image similarity test with the
best similarity threshold (see Section 5.2.2) gives us the
highest recall with 100% precision for the entire dataset.

4 UNVEIL Implementation

In this section, we describe the implementation details of
a prototype of UNVEIL for the Windows platform. We
chose Windows for a proof-of-concept implementation
because it is currently the main target of ransomware at-
tacks. We elaborate on how UNVEIL automatically gen-
erates artificial, but realistic user environments for each
analysis run, how the system-wide monitoring was im-
plemented, and how we deployed the prototype of our
system.

4.1 Generating User Environments
In each run, the user environment is made up of sev-
eral forms of content such as digital images, videos, au-
dio files, and documents that can be accessed during a
user Windows Session. The user content is automatically-
generated according to the following process:

For each file extension from a space of possible exten-
sions, a set of files are generated where the number of
files for each extension is sampled from a uniform ran-
dom distribution for each sample execution. Each set of
files collectively forms a document space for the sample
execution environment. From a statistical perspective,
document spaces generated for each sample execution
should be indistinguishable from real user data. As an
approximation to this ideal, randomly-selected numbers
of files are generated per extension for each run accord-
ing to the process described above.

In the following, we describe the additional properties
that a document space should have in order to complicate
programmatic approaches that ransomware samples can

potentially use to identify the automatically-generated
user environment.
Valid Content. The user content generator creates
real files with valid headers and content using standard
libraries (e.g., python-docx, python-pptx, OpenSSL).
Based on empirical observation, we created four file cat-
egories that a typical ransomware sample tries to find
and encrypt: documents, keys and licenses, file archives,
and media. Document extensions include txt, doc(x),
ppt(x), tex, xls(x), c, pdf and py. Keys and license
extensions include key, pem, crt, and cer. Archive ex-
tensions include zip and rar files. Finally, media exten-
sions include jp(e)g, mp3, and avi. For each sample
execution, a subset of extensions are randomly selected
and are used to generate user content across the system.

In order to generate content that appears meaningful,
we collected approximately 100,000 sentences by query-
ing 500 English words in Google. For each query, we
collected the text from the first 30 search results to create
a sentence list. We use the collected sentences to gen-
erate the content for the user files. We used the same
technique to create a word list to give a name to the user
files. The word list allows us to create files with variable
name lengths that do not appear random. Clearly, the
problem with random content and name generation (e.g.,
xteyshtfqb.docx) is that the attacker could program-
matically calculate the entropy of the file names and con-
tents to detect content that has been generated automat-
ically. Hence, by generating content that appears mean-
ingful, we make it difficult for the attacker to fingerprint
the system and detect our generated files.

File Paths. Note that the system is also careful to
randomly generate the supposed victim’s directory struc-
ture. For example, directory names are also generated
based on meaningful words. Furthermore, the system
also associates files of certain types with standard loca-
tions in the Windows directory structure for those file
types (e.g., the system does not create document files
in a directory with image files, but rather under My
Documents). The path length of user files is also non-
deterministic and is generated randomly. In addition,
each folder may have a set of sub-folders. Consequently,
the generated paths to user files have variable depths rel-
ative to the root folder.

Time Attributes. Another non-determinism strategy
used by our approach is to generate files with different
creation, modification, and access times. The file time
attributes are sampled from a distribution of likely times-
tamps when creating the file. When the system creates
files with different time attributes, the time attributes of
the containing folders are also updated automatically. In
this case, the creation time of the folder is the minimum
of all creation times of files and folders inside the folder,
while the modification and access times are the maxi-

6

mum of the corresponding timestamps.
While we have not observed ransomware samples that

have attempted to use fingerprinting heuristics of the
content of the analysis environment, the nondeterminism
strategies used by UNVEIL serve as a basis for making
the analysis resilient to fingerprinting by design.

4.2 Filesystem Activity Monitor
Several techniques have been used to monitor sample
filesystem activity in malware analysis environments.
For example, filesystem activity can be monitored by
hooking a list of relevant filesystem API functions or
relevant system calls using the System Service Descrip-
tor Table (SSDT). Unfortunately, these approaches are
not suitable for UNVEIL’s detection approach for sev-
eral reasons. First, API hooking can be bypassed by
simply copying a DLL containing the desired code and
dynamically loading it into the process’ address space
under a different name. Stolen code [17, 19] and slid-
ing calls [19] are other examples of API hooking evasion
that are common in the wild. Furthermore, ransomware
can use customized cryptosystems instead of the stan-
dard APIs to bypass API hooking while encrypting user
files. Hooking system calls via the SSDT also has other
technical limitations. For example, it is prevented on 64-
bit systems due to Kernel Patch Protection (KPP). Fur-
thermore, most SSDT functions are undocumented and
subject to change across different versions of Windows.

Therefore, instead of API or system call hooking, UN-
VEIL monitors filesystem I/O activity using the Windows
Filesystem Minifilter Driver framework [34], which is
a standard kernel-based approach to achieving system-
wide filesystem monitoring in multiple versions of Win-
dows. The prototype consists of two main components
for I/O monitoring and retrieving logs of the entire sys-
tem with approximately 2,800 SLOC in C++. In Win-
dows, I/O requests are represented by I/O Request Pack-
ets (IRPs). UNVEIL’s monitor sets callbacks on all I/O
requests to the filesystem generated on behalf of user-
mode processes. Basing UNVEIL’s filesystem monitor
on a minifilter driver allows it to be located at the closest
possible layer to the filesystem with access to nearly all
objects of the operating system.

4.3 Desktop Lock Monitor
To identify desktop locking ransomware, screenshots are
captured from outside of the dynamic analysis environ-
ment to prevent potential tampering by the malware.
For dissimilarity testing, a python script implements the
Structural Similarity Image Metric (SSIM) as described
in Section 3.2. UNVEIL first converts the images to float-
ing point data, and then calculates parameters such as

mean intensity µ using Gaussian filtering of the images’
contents. We also used default values (k1 = 0.01 and
k2 = 0.03) to obtain the values of c1 and c2 to calculate
the structural similarity score in local windows presented
in Section 3.2.

The system also employs Tesseract-OCR [38], an
open source OCR engine, to extract text from the se-
lected areas of the screenshots. To perform the anal-
ysis on the extracted text within images, we collected
more than 10,000 unique ransom notes from different
ransomware families. We first clustered ransom notes
based on the family type and the visual appearance of
the ransom notes. For each cluster, we then extracted the
ransom texts in the corresponding ransom notes and per-
formed pre-filtering to remove unnecessary words within
the text (e.g., articles, pronouns) to avoid obvious false
positive cases. The result is a word list for each family
cluster that can be used to identify ransom notes and fur-
thermore label notes belonging to a known ransomware
family.

5 Evaluation

We evaluated UNVEIL with two experiments. The goal
of the first experiment is to demonstrate that the system
can detect known ransomware samples, while the goal
of the second experiment is to demonstrate that UNVEIL
can detect previously unknown ransomware samples.

5.1 Experimental Setup

The UNVEIL prototype is built on top of Cuckoo Sand-
box [13]. Cuckoo provides basic services such as sam-
ple submission, managing multiple VMs, and perform-
ing simple human interaction tasks such as simulating
user input during an analysis. However, in principle, UN-
VEIL could be implemented using any dynamic analysis
system (e.g., BitBlaze [5], VxStream Sandbox [37]).

We evaluated UNVEIL using 56 VMs running Win-
dows XP SP3 on a Ganeti cluster based on Ubuntu 14.04
LTS. While Windows XP is not required by UNVEIL, it
was chosen because it is well-supported by Cuckoo sand-
box. Each VM had multiple NTFS drives. We took anti-
evasion measures against popular tricks such as changing
the IP address range and the MAC addresses of the VMs
to prevent the VMs from being fingerprinted by malware
authors. Furthermore, we permitted controlled access to
the Internet via a filtered host-only adapter. In particu-
lar, the filtering allowed limited IRC, DNS, and HTTP
traffic so samples could communicate with C&C servers.
SMTP traffic was redirected to a local honeypot to pre-
vent spam, and network bandwidth was limited to miti-
gate potential DoS attacks.

7

Family Type Samples

Cryptolocker crypto 33 (1.5%)
CryptoWall crypto 42 (2.0%)
CTB-Locker crypto 77 (3.6%)
CrypVault crypto 21 (1.0%)
CoinVault crypto 17 (0.8%)
Filecoder crypto 19 (0.9%)
TeslaCrypt crypto 39 (1.8%)
Tox crypto 71 (3.3%)
VirLock locker 67 (3.2%)
Reveton locker 501 (23.6%)
Tobfy locker 357 (16.8%)
Urausy locker 877 (41.3%)

Total Samples - 2,121

Table 1: The list of ransomware families used in the first ex-
periment.

The operating system image inside the malware anal-
ysis system included typical user data such as saved so-
cial networking credentials and a valid browsing history.
For each operating system image, multiple users were
defined to run the experiments. We also ran a script that
emulated basic user activity while the malware sample
was running on the system, such as launching a browser
and navigating to multiple websites, or clicking on the
desktop. This interaction was randomly-generated, but
was constant across runs. Each sample was executed in
the analysis environment for 20 minutes. As described in
Sections 3.1 and 3.2, user environments were generated
for each run, filesystem I/O traces were recorded, and
pre- and post-execution screenshots were captured. After
each execution, the VM was rolled back to a clean state
to prevent any interference across executions. All ex-
periments were performed according to well-established
experimental guidelines [40] for malware experiments.

5.2 Ground Truth (Labeled) Dataset

In this experiment, we evaluated the effectiveness of UN-
VEIL on a labeled dataset, and ran different screen locker
samples to determine the best threshold value τsim for the
large-scale experiment.

We collected ransomware samples from public repos-
itories [1, 3] and online forums that share malware sam-
ples [2, 32]. We also received labeled ransomware sam-
ples from two well-known anti-malware companies. In
total, we collected 3,156 recent samples. In order to
make sure that those samples were indeed active ran-
somware, we ran them in our test environment. We con-
firmed 2,121 samples to be active ransomware instances.
After each run, we checked the filesystem activity of
each sample for any signs of attacks on user data. If we
did not see any malicious filesystem activity, we checked
whether running the sample displayed a ransom note.

Table 1 describes the ransomware families we used in
this experiment. We note that the dataset covers the ma-
jority of the current ransomware families in the wild. In

Run OP Proc FName Offset Entropy

CryptoWall 3 read explorer.exe document.cad [0,4096) 5.21
write explorer.exe document.cad [0,4096) 7.04
· · ·

CryptoWall 4 read explorer.exe project.cad [0,4096) 5.21
write explorer.exe project.cad [0,4096) 7.11
· · ·
rename explorer.exe t67djkje.elkd8

Table 2: An example of I/O access in UNVEIL for CryptoWall
3.0 and CryptoWall 4.0.

Application OP Description

CrypVault read read low entropy buffer from original file
write write high entropy buffer to a new file
· · ·
write overwrite the buffer of the original file
delete read attributes, delete the original file

CryptoWall4 read read low entropy buffer
write overwrite with high entropy buffer
· · ·
rename read attributes, rename the files

SDelete write overwrite data buffer
· · ·
delete read attributes, delete the file

7-zip read read data buffer from original file
write write data buffer to a new file
· · ·

Table 3: I/O accesses for deletion and compression mecha-
nisms in benign/malicious applications. Benign programs can
generate I/O access requests similar to ransomware attacks, but
since they are not designed to deny access to the original files,
their I/O sequence patterns are different from ransomware at-
tacks.

addition to the labeled ransomware dataset, we also cre-
ated a dataset that consisted of non-ransomware samples.
These samples were submitted to the Anubis analysis
platform [16], and consisted of a collection of benign as
well as malicious samples. We selected 149 benign ex-
ecutables including applications that have ransomware-
like behavior such as secure deletion, encryption, and
compression. A short list of these applications are pro-
vided in Table 5. We also tested 384 non-ransomware
malware samples from 36 malware families to evalu-
ate the false positive rate of UNVEIL. Table 2 shows
an example of I/O traces for CryptoWall 3.0 and Cryp-
toWall 4.0 where the victim’s file is first read and then
overwritten with an encrypted version. The I/O access
patterns of CryptoWall 4.0 samples to overwrite the con-
tent of the files are identical since they use the same cryp-
tosystem. The main difference is that the filenames and
extensions are modified with random characters, proba-
bly to minimize the chance of recovering the files based
on their names in the Master File Table (MFT) in the
NTFS filesystem.

8

5.2.1 Filesystem Activity of Benign Applications
with Potential Ransomware-like Behavior

One question that arises is whether benign applications
such as encryption or compression programs might gen-
erate similar I/O request sequences, resulting in false
positives. Note that with benign applications, the original
file content is treated carefully since the ultimate goal is
to generate an encrypted version of the original file, and
not to restrict access to the file. Therefore, the default
mechanism in these applications is that the original files
remain intact even after encryption or compression. If
automatic deletion is deliberately activated by the user
after the encryption, it can potentially result in a false
positive (see Figure 2.2). However, in our approach, we
assume that the usual default behavior is exhibited and
the original data is preserved. We believe that this is a
reasonable assumption, considering that we are building
an analysis system that will mainly analyze potentially
suspicious samples captured and submitted for analysis.
Nevertheless, we investigated the I/O access patterns of
benign programs, shown in Table 3. The I/O traces indi-
cate that these programs exhibit distinguishable I/O ac-
cess patterns as a result of their default behavior.

Benign applications might not necessarily perform en-
cryption or deletion on user files, but can change the
content of the files. For example, updating the content
of a Microsoft PowerPoint file (e.g., embedding images
and media) generates I/O requests similar to ransomware
(see Figure 2.1). However, the key difference here is that
such applications usually generate I/O requests for a sin-
gle file at a time and repetition of I/O requests does not
occur over multiple user files. Also, note that benign ap-
plications typically do not arbitrarily encrypt, compress
or modify user files, but rather need sophisticated input
from users (e.g., file names, keys, options, etc.). Hence,
most applications would simply exit, or expect some in-
put when executed in UNVEIL.

5.2.2 Similarity Threshold

We performed a precision-recall analysis to find the best
similarity threshold τsim for desktop locking detection.
The best threshold value to discriminate between similar
and dissimilar screenshots should be defined in such a
way that UNVEIL is be able to detect screen locker ran-
somware while maintaining an optimal precision-recall
rate. Figure 3 shows empirical precision-recall results
when varying τsim. As the figure shows, with τsim = 0.32,
more than 97% of the ransomware samples across both
screen and file locker samples are detected with 100%
precision. In the second experiment, we used this simi-
larity threshold to detect screen locker ransomware in a
malware feed unknown to UNVEIL.

t = 0.32

Figure 3: Precision-recall analysis of the tool. The threshold
value τsim = 0.32 gives the highest recall with 100% precision.

Evaluation Results

Total Samples 148,223
Detected Ransomware 13,637 (9.2%)
Detection Rate 96.3%
False Positives 0.0%
New Detection 9,872 (72.2%)

Table 4: UNVEIL detection results. 72.2% of the ransomware
samples detected by UNVEIL were not detected by any of AV
scanners in VirusTotal at the time of the first submission. 7,572
(76.7%) of the newly detected samples were destructive file
locker ransomware samples.

5.3 Detecting Zero-Day Ransomware
The main goal of the second experiment is to evaluate the
accuracy of UNVEIL when applied to a large dataset of
recent real-world malware samples. We then compared
our detection results with those reported by AV scanners
in VirusTotal.

This dataset was acquired from the daily malware feed
provided by Anubis [16] to security researchers. The
samples were collected from May 18th 2015 until Febru-
ary 12th 2016. The feed is generated from the Anubis
submission queue, which is fed in turn by Internet users
and security companies. Hence, before performing the
experiment, we filtered the incoming Anubis samples by
removing those that were not obviously executable (e.g.,
PDFs, images). After this filtering step, the dataset con-
tained 148,223 distinct samples. Each sample was then
submitted to UNVEIL to obtain I/O access traces and pre-
/post-execution desktop image dissimilarity scores.

5.3.1 Detection Results

Table 4 shows the evaluation results of the second experi-
ment. With the similarity threshold τsim = 0.32, UNVEIL
labeled 13,637 (9.2% of the dataset) samples in the Anu-

9

bis malware feed as being ransomware; these included
both file locker and desktop locker samples.

Evaluation of False Positives. As we did not have a la-
beled ground truth in the second experiment, we cannot
provide an accurate precision-recall analysis, and verify-
ing the detection results is clearly challenging. For ex-
ample, re-running samples while checking for false pos-
itives is not feasible in all cases since samples may have
become inactive at the time of re-analysis (e.g., the C&C
server might have been taken down).

Hence, we used manual verification of the detection
results. That is, for the samples that were detected
as screen locker ransomware, we manually checked the
post-attack screenshots that were reported taken by UN-
VEIL. The combination of structural similarity test and
the OCR technique to extract the text provides a reliable
automatic detection for this class of ransomware. We
confirmed that UNVEIL correctly reported 4,936 samples
that delivered a ransom note during the analysis.

Recall that UNVEIL reports a sample as a file locker
ransomware if the I/O access pattern follows one of the
three classes of ransomware attacks described in Fig-
ure 2. For file locker ransomware samples, we used
the I/O reports for each sample. We listed all the I/O
activities on the first five user files during that run and
looked for suspicious I/O activity such as requesting
write and/or delete operations. Note that the detection
approach used in UNVEIL is only based on the I/O ac-
cess pattern. We do not check for changes in entropy in
the detection phase and it is only used for our evaluation.

If we find multiple write or delete I/O requests to the
first five generated user files and also a significant in-
crease in the entropy between read and write data buffers
at a given file offset, or the creation of new high entropy
files, we confirmed the detection as a true positive. The
creation of multiple new high entropy files based on user
files is a reliable sign of ransomware in our tests. For
example, the malware sample that uses secure deletion
techniques may overwrite files with low entropy data.
However, the malicious program first needs to generate
an encrypted version of the original files. In any case,
generating high entropy data raises an alarm in our eval-
uation.

By employing these two approaches and analyzing the
results, we did not find any false positives. There were
a few cases that had significant change in the structure
of the images. Our closer investigation revealed that
the installed program generated a large installation page,
showed some unreadable characters in the window, and
did not close even if the button was clicked (i.e., non-
functional buttons). In another case, the program gen-
erated a large setup window, but it did not proceed due
to a crash. These cases produce a higher dissimilarity

score than the threshold value. However, since the ex-
tracted text within those particular windows did not con-
tain any ransomware-related contents, UNVEIL safely
categorized them as being non-ransomware samples.

Evaluation of False Negatives. Determining false
negative rates is a challenge since manually checking
148,223 samples is not feasible. In the following, we
provide an approximation of false negatives for UNVEIL.

In our tests on the labeled dataset, false negatives
mainly occurred in samples that make persistent changes
on the desktop, but since the dissimilarity score of pre-
/post-attack is less that τsim = 0.32, it is not detected as
ransomware by UNVEIL. Our analysis of labeled sam-
ples from multiple ransomware families (see Section5.2)
shows that these cases were mainly observed in samples
with a similarity score between the interval [0.18, 0.32).
This is because for lower similarity scores, changes in
the screenshots are negligible or small (e.g., Windows
warning/error messages). Consequently, in order to in-
crease the chance of catching false negative cases, we
selected all the samples where their dissimilarity score
was between [0.18, 0.32). This decreases the size of po-
tential desktop locker ransomware that were not detected
by UNVEIL to 4,642 samples. We manually checked the
post-attack screenshots of these samples, and found 377
desktop locker ransomware that UNVEIL was not able
to detect. Our analysis shows that the false negatives in
desktop locker ransomware resulted from samples in one
ransomware family that generated a very transparent ran-
som note with a dissimilarity score between [0.27, 0.31]
that was difficult to read.

For file locker ransomware, we first removed the sam-
ples that were not detected as malware by any of the
AV scanners in VirusTotal after multiple resubmissions
in consecutive days (see Section 5.3.2). By applying this
approach, we were able to reduce the number of sam-
ples to check by 47%. Then, we applied a similar ap-
proach we used as described above. We listed the first
five user files generated for that sample run and checked
whether any process requested write access to those files.
We also checked the entropy of multiple data buffers. If
we identified write access with a significant increase in
the entropy of data buffers compared to the entropy of
data buffer in the read access for those files, we report it
as a false negative.

Our test shows that UNVEIL does not have any false
negatives in file locker ransomware samples. Conse-
quently, we conclude that UNVEIL is able to detect mul-
tiple classes of ransomware attacks with a low false pos-
itive rate (FPs = 0.0% at a TP = 96.3%).

10

5.3.2 Early Warning

One of the design goals of UNVEIL is to be able to auto-
matically detect previously unknown (i.e., zero-day) ran-
somware. In order to run this experiment, we did the fol-
lowing. Once per day over the course of the experiment,
we built a malware dataset that was concurrently submit-
ted to UNVEIL and VirusTotal. If a sample was detected
as ransomware by UNVEIL, we checked the VirusTotal
(VT) detection results. In cases where a ransomware
sample was not detected by any VT scanner, we reported
it as a new detection.

In addition, we also measured the lag between a
new detection by UNVEIL and a VT detection. To
that end, we created a dataset from the newly detected
samples submitted on days {1,2, . . . ,n− 1,n} and re-
submitted these samples to see whether the detection re-
sults changed. We considered the result of all 55 VT
scanners in this experiment. Since the number of scan-
ners is relatively high, we defined a VT detection ratio ρ

as the ratio of the total number of scanners that identified
the sample as ransomware or malware to the total num-
ber of scanners checked by VT. ρ is therefore a value on
the interval [0,1] where zero means that the sample was
not detected by any of the 55 VT scanners, and 1 means
that all scanners reported the sample as malware or ran-
somware. Since there is no standard labeling scheme for
malware in the AV industry, a scanner can label a sample
using a completely different name from another scanner.
Consequently, to avoid biased results, we consider the
labeling of a sample using any name as a successful de-
tection.

In our experiment, we submitted the detected samples
every day to see how the VT detection ratio ρ changes
over time. The distribution of ρ for each submission is
shown in Figure 4. Our analysis shows that ρ does not
significantly change after a small number of subsequent
submissions. For the first submission, 72.2% of the ran-
somware samples detected by UNVEIL were not detected
by any of the 55 VT scanners. After a few submissions,
ρ does not change significantly, but generally was con-
centrated either towards small or very large ratios. This
means that after a few re-submissions, either only a few
scanners detected a sample, or almost all the scanners
detected the sample.

5.4 Case Study: Automated Detection of a
New Ransomware Family

In this section, we describe a new ransomware family,
called SilentCrypt, that was detected by UNVEIL during
the experiments. After our system detected these sam-
ples and submitted them to VirusTotal, several AV ven-
dors picked up on them and also started detecting them a

0.0 0.2 0.4 0.6 0.8 1.00.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Submission #1

0.0 0.2 0.4 0.6 0.8 1.00.00
0.05
0.10
0.15
0.20
0.25

Submission #2

0.0 0.2 0.4 0.6 0.8 1.00.00
0.05
0.10
0.15
0.20 Submission #3

0.0 0.2 0.4 0.6 0.8 1.00.00
0.05
0.10
0.15
0.20 Submission #4

0.0 0.2 0.4 0.6 0.8 1.00.00
0.05
0.10
0.15
0.20 Submission #5

0.0 0.2 0.4 0.6 0.8 1.00.00
0.05
0.10
0.15
0.20
0.25

Submission #6

Pollution Ratio

De
ns

ity
 D

is
tr

ib
ut

io
n

Figure 4: Evolution of VT scanner reports after six submis-
sions. 72.2% of the samples detected by UNVEIL were not
detected by any of AV scanners in the first submission. After
a few re-submissions, the detection results do not change sig-
nificantly. The detection results tend to be concentrated either
towards small or very large detection ratios. This means that a
sample is either detected by a relatively small number of scan-
ners, or almost all of the scanners.

couple of days later, confirming the malice of the sample
that we automatically detected.

This family uses a unique and effective method to fin-
gerprint the runtime environment of the analysis system.
Unlike other malware samples that check for specific ar-
tifacts such as registry keys, background processes, or
platform-specific characteristics, this family checks the
private files of a user to determine if the code is run-
ning in an analysis environment. When the sample is
executed, it first checks the number of files in the user’s
directories, and sends this list to the C&C server before
starting the attack.

Multiple online malware analysis systems such as
malwr.com, Anubis, and a modern sandboxing technol-
ogy provided by a well-known, anti-malware company
did not register any malicious activity for this sample.
However, the sample showed heavy encryption activity
when analyzed by UNVEIL.

An analysis of the I/O activity of this sample re-
vealed that this family first waited for several minutes
before attacking the victim’s files. Figure 5 shows the
three main I/O activities of one of the samples in this
family. The sample traverses the current user’s main
directories, and creates a list of files and folders. If
the sample receives permission to attack from the C&C
server, it begins encrypting the targeted files. To con-
firm UNVEIL’s alerts, we conducted a manual investi-
gation over several days. Our analysis concluded that
the malicious activity is started only if user activity is
detected. Unlike other ransomware samples that imme-

11

0 100 200 300 400 500 600

0.00

0.05

0.10

0.15

0.20

0.25

0.30

QUERY OP

0 100 200 300 400 500 600

0.00

0.05

0.10

0.15

0.20

0.25

READ OP

0 100 200 300 400 500 600

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

WRITE OP

D
i
s

t
r
i
b

u
t
i
o

n
(
%

)

Analysis Time (Sec)

Userspace file fingerprinting

Creating a

list of files

Periodic file encryption

Sleep Time

Sleep Time

Sleep Time

Figure 5: I/O activities of a previously unknown ransomware
family detected by UNVEIL. The sample first performs victim
file fingerprinting to ensure that the running environment is not
a bare user environment.

diately attack a victim’s files when they are executed,
this family only encrypt files that have recently been
opened by the user while the malicious process is mon-
itoring the environment. That is, the malicious process
reads the file’s data and overwrites it with encrypted data
if the file is used. The file name is then updated to
"filename.extension.locked forever" after it has
been encrypted.

UNVEIL was able to detect this family of ransomware
automatically because it was triggered after the system
accessed some of the generated user files as a part of the
user activity emulation scripts. Once we submitted the
sample to VirusTotal, the sample was picked up by other
AV vendors (5/55) after five days with different labels.
A well-known, sandboxing-based security company con-
firmed our findings that the malware sample was a new
threat that they had not detected before. We provide
an anonymous video of a sample from this ransomware
family in [6].

6 Discussion and Limitations

The evaluation in Section 5 demonstrates that UNVEIL
achieves good, practical, and useful detection results on
a large, real-world dataset. Unfortunately, malware au-
thors continuously observe defensive advances and adapt
their attacks accordingly. In the following, we discuss
limitations of UNVEIL and potential evasion strategies.

There is always the possibility that attackers will find
ways to fingerprint the automatically generated user en-
vironment and avoid it. However, this comes at a high
cost, and increases the difficulty bar for the attacker. For
example, in desktop-locking ransomware, malware can

use heuristics to look for specific user interaction be-
fore locking the desktop (e.g., waiting for multiple login
events or counting the number of user clicks). However,
implementing these approaches can potentially make de-
tection easier since these approaches require hooking
specific functions in the operating system. The presence
of these hooking behaviors are themselves suspicious
and are used by current malware analysis systems to de-
tect different classes of malware. Furthermore, these ap-
proaches delay launching the attack which increases the
risk of being detected by AV scanners on clients before a
successful attack occurs.

Another possibility is that a malware might only en-
crypt a specific part of a file instead of aggressively en-
crypting the entire file, or simply shuffle the file content
using a specific pattern that makes the files unreadable.
Although we have not seen any sample with these behav-
iors, developing such ransomware is quite possible. The
key idea is that in order to perform such activities, the
malicious program should open the file with write per-
mission and manipulate at least some data buffers of the
file content. In any case, if the malicious program ac-
cesses the files, UNVEIL will still see this activity. There
is no real reason for benign software to touch automat-
ically generated files with write permission and modify
the content. Consequently, such activities will still be
logged. Malware authors might use other techniques to
notify the victim and also evade the desktop lock mon-
itor. As an example, the ransomware may display the
ransom note via video or audio files rather than locking
the desktop. As we partially discussed, these approaches
only make sense if the malware is able to successfully
encrypt user files first. In this case, UNVEIL can identify
those malicious filesystem access as discussed in Sec-
tion 3.1.2.

We also believe that the current implementation of text
extraction to detect desktop locker ransomware can be
improved. We observed that the change in the structure
of the desktop screen-shots is enough to detect a large
number of current ransomware attacks since UNVEIL ex-
ploits the attacker’s goal which is to ensure that the vic-
tims see the ransom note. However, we believe that the
text extraction module can be improved to detect possible
evasion techniques an attacker could use to generate the
ransom note (e.g., using uncommon words in the ransom
text).

Clearly, there is always the possibility that an attacker
will be able to fingerprint the dynamic analysis environ-
ment. For example, stalling code [26] has become in-
creasingly popular to prevent the dynamic analysis of a
sample. Such code takes longer to execute in a virtual en-
vironment, preventing execution from completing during
an analysis. Also, attackers can actively look for signs
of dynamic analysis (e.g., signs of execution in a VM

12

such as well-known hard disk names). Note that UN-
VEIL is agnostic as to the underlying dynamic analysis
environment. Hence, as a mitigation, UNVEIL can use
a sandbox that is more resistant to these evasion tech-
niques(e.g., [26, 48]). The main contribution of UNVEIL
is not the dynamic analysis of malware, but rather the in-
troduction of new techniques for the automated, specific
detection of ransomware during dynamic analysis.

UNVEIL runs within the kernel, and aims to detect
user-level ransomware. As a result, there is the risk that
ransomware may run at the kernel level and thwart some
of the hooks UNVEIL uses to monitor the filesystem.
However, this would require the ransomware to run with
administrator privileges to load kernel code or exploit a
kernel vulnerability. Currently, most ransomware runs
as user-level programs because this is sufficient to carry
out ransomware attacks. Kernel-level attacks would re-
quire more sophistication, and would increase the diffi-
culty bar for the attackers. Also, if additional resilience
is required, the kernel component of UNVEIL could be
moved outside of the analysis sandbox.

7 Related Work

Many approaches have been proposed to date that have
aimed to improve the analysis and detection of mal-
ware. A number of approaches have been proposed
to describe program behavior from analyzing byte pat-
terns [29, 43, 41, 50] to transparently running programs
in malware analysis systems [4, 23, 22, 47]. Early steps
to analyze and capture the main intent of a program fo-
cused on analysis of control flow. For example, Kruegel
et al. [28] and Bruschi et al. [9] showed that by mod-
eling programs based on their instruction-level control
flow, it is possible to bypass some forms of obfuscation.
Similarly, Christodorescu et al. [12] used instruction-
level control flow to design obfuscation-resilient detec-
tion systems. Later work focused on analyzing and
detecting malware using higher-level semantic charac-
terizations of their runtime behavior derived from se-
quences of system call invocations and OS resource ac-
cesses [24, 25, 11, 33, 42, 51].

Similar to our use of automatically-generated user
content, decoys have been used in the past to detect se-
curity breaches. For instance, the use of decoy resources
has been proposed to detect insider attacks [8, 52]. Re-
cently, Juels et al. [18] used honeywords to improve the
security of hashed passwords. The authors show that de-
coys can improve the security of hashed passwords since
the attempt to use the decoy password for logins results
in an alarm. In other work, Nikiforakis et al. [35] used
decoy files to detect illegally obtained data from file host-
ing services.

There have also been some recent reports on the ran-
somware threat. For example, security vendors have re-
ported on the threat of potential of ransomware attacks
based on the number of infections that they have ob-
served [46, 7, 44, 36]. A first report on specific ran-
somware families was made by Gazet where the author
analyzed three ransomware families including Krotten

and Gpcode [14]. The author concluded that while these
early families were designed for massive propagation,
they did not fulfill the basic requirements for mass extor-
tion (e.g., sufficiently long encryption keys). Recently,
Kharraz et al. [21] analyzed 15 ransomware families and
provided an evolution-based study of ransomware at-
tacks. They performed an analysis of charging methods
and the use of Bitcoin for monetization. They proposed
several high-level mitigation strategies such as the use of
decoy resources to detect suspicious file access. Their
assumption is that every filesystem access to delete or
encrypt decoy resources is malicious and should be re-
ported. However, they did not implement any concrete
solution to detect or defend against these attacks.

We are not aware of any systems that have been pro-
posed in the literature that specifically aim to detect ran-
somware in the wild. In particular, in contrast to exist-
ing work on generic malware detection, UNVEIL detects
behavior specific to ransomware (e.g., desktop locking,
patterns of filesystem accesses).

8 Conclusions

In this paper we presented UNVEIL, a novel approach
to detecting and analyzing ransomware. Our system is
the first in the literature to specifically identify typical
behavior of ransomware such as malicious encryption of
files and locking of user desktops. These are behaviors
that are difficult for ransomware to hide or change.

The evaluation of UNVEIL shows that our approach
was able to correctly detect 13,637 ransomware samples
from multiple families in a real-world data feed with zero
false positives. In fact, UNVEIL outperformed all ex-
isting AV scanners and a modern industrial sandboxing
technology in detecting both superficial and technically
sophisticated ransomware attacks. Among our findings
was also a new ransomware family that no security com-
pany had previously detected before we submitted it to
VirusTotal.

9 Acknowledgements

This work was supported by the National Science Foun-
dation (NSF) under grant CNS-1409738, and Secure
Business Austria.

13

References

[1] Minotaur Analysis - Malware Repository. minota
uranalysis.com.

[2] Malware Tips - Your Security Advisor.
http://malwaretips.com/forums/viru
s-exchange.104/.

[3] MalwareBlackList - Online Repository of Mali-
cious URLs. http://www.malwareblacklist.c
om.

[4] Proof-of-concept Automated Baremetal Malware
Analysis Framework. https://code.google.com
/p/nvmtrace/.

[5] BitBlaze Malware Analysis Service.
http://bitblaze.cs.berkeley.edu/, 2016.

[6] SilentCrypt: A new ransomware family. https:

//www.youtube.com/watch?v=qiASKA4BMck,
2016.

[7] AJJAN, A. Ransomware: Next-Generation Fake
Antivirus. http://www.sophos.com/en-us/me
dialibrary/PDFs/technicalpapers/Sophos

RansomwareFakeAntivirus.pdf, 2013.

[8] BOWEN, B. M., HERSHKOP, S., KEROMYTIS,
A. D., AND STOLFO, S. J. Baiting inside attackers
using decoy documents. Springer, 2009.

[9] BRUSCHI, D., MARTIGNONI, L., AND MONGA,
M. Detecting self-mutating malware using control-
flow graph matching. In Detection of Intru-
sions and Malware & Vulnerability Assessment.
Springer, 2006, pp. 129–143.

[10] CATALIN CIMPANU. Breaking Bad Ransomware
Completely Undetected by VirusTotal. http:

//http://news.softpedia.com/news/brea
king-bad-ransomware-goes-completely-u

ndetected-by-virustotal-493265.shtml,
2015.

[11] CHRISTODORESCU, M., JHA, S., AND KRUEGEL,
C. Mining specifications of malicious behavior. In
Proceedings of the 1st India software engineering
conference (2008), ACM, pp. 5–14.

[12] CHRISTODORESCU, M., JHA, S., SESHIA, S. A.,
SONG, D., AND BRYANT, R. E. Semantics-aware
malware detection. In Security and Privacy, 2005
IEEE Symposium on (2005), IEEE, pp. 32–46.

[13] CUCKOO FOUNDATION. Cuckoo Sandbox: Auto-
mated Malware Analysis. www.cuckoosandbox.o
rg, 2015.

[14] GAZET, A. Comparative analysis of various ran-
somware virii. Journal in Computer Virology 6, 1
(February 2010), 77–90.

[15] GRIER, C., BALLARD, L., CABALLERO, J.,
CHACHRA, N., DIETRICH, C. J., LEVCHENKO,
K., MAVROMMATIS, P., MCCOY, D., NAPPA, A.,
PITSILLIDIS, A., ET AL. Manufacturing com-
promise: the emergence of exploit-as-a-service.
In Proceedings of the 2012 ACM conference on
Computer and communications security (2012),
pp. 821–832.

[16] INTERNATIONAL SECURE SYSTEM LAB. Anubis
- Malware Analysis for Unknown Binaries. https:
//anubis.iseclab.org/, 2015.

[17] JASHUA TULLY. An Anti-Reverse Engineering
Guide. http://www.codeproject.com/Article
s/30815/An-Anti-Reverse-Engineering-G

uide#StolenBytes, 2008.

[18] JUELS, A., AND RIVEST, R. L. Honeywords:
Making password-cracking detectable. In Proceed-
ings of the 2013 ACM SIGSAC conference on Com-
puter & communications security (2013), ACM,
pp. 145–160.

[19] KAWAKOYA, Y., IWAMURA, M., SHIOJI, E., AND
HARIU, T. Api chaser: Anti-analysis resistant mal-
ware analyzer. In Research in Attacks, Intrusions,
and Defenses. Springer, 2013, pp. 123–143.

[20] KEVIN SAVAGE, PETER COOGAN, HON
LAU. the Evolution of Ransomware. http:

//www.symantec.com/content/en/us/enter
prise/media/security response/whitep

apers/the-evolution-of-ransomware.pdf,
2015.

[21] KHARRAZ, A., ROBERTSON, W., BALZAROTTI,
D., BILGE, L., AND KIRDA, E. Cutting the
Gordian Knot: A Look Under the Hood of Ran-
somware Attacks. In Conference on Detection of
Intrusions and Malware & Vulnerability Assess-
ment (DIMVA) (07 2015).

[22] KIRAT, D., VIGNA, G., AND KRUEGEL, C. Bare-
box: efficient malware analysis on bare-metal. In
Proceedings of the 27th Annual Computer Security
Applications Conference (2011), ACM, pp. 403–
412.

[23] KIRAT, D., VIGNA, G., AND KRUEGEL, C. Bare-
cloud: Bare-metal analysis-based evasive malware
detection. In 23rd USENIX Security Symposium
(USENIX Security 14) (2014), USENIX Associa-
tion, pp. 287–301.

14

[24] KIRDA, E., KRUEGEL, C., BANKS, G., VIGNA,
G., AND KEMMERER, R. Behavior-based spyware
detection. In Usenix Security (2006), vol. 6.

[25] KOLBITSCH, C., COMPARETTI, P. M.,
KRUEGEL, C., KIRDA, E., ZHOU, X.-Y.,
AND WANG, X. Effective and efficient malware
detection at the end host. In USENIX security
symposium (2009), pp. 351–366.

[26] KOLBITSCH, C., KIRDA, E., AND KRUEGEL, C.
The power of procrastination: detection and mit-
igation of execution-stalling malicious code. In
Proceedings of the 18th ACM conference on Com-
puter and communications security (2011), ACM,
pp. 285–296.

[27] KREBS, B. FBI: North Korea to Blame for Sony
Hack. http://krebsonsecurity.com/2014/
12/fbi-north-korea-to-blame-for-sony-h

ack/, 2014.

[28] KRUEGEL, C., KIRDA, E., MUTZ, D., ROBERT-
SON, W., AND VIGNA, G. Polymorphic worm de-
tection using structural information of executables.
In Recent Advances in Intrusion Detection (2006),
Springer, pp. 207–226.

[29] LI, W.-J., WANG, K., STOLFO, S. J., AND HER-
ZOG, B. Fileprints: Identifying file types by n-
gram analysis. In Information Assurance Work-
shop, 2005. IAW’05. Proceedings from the Sixth
Annual IEEE SMC (2005), IEEE, pp. 64–71.

[30] LIN, J. Divergence measures based on the shannon
entropy. IEEE Transactions on Information theory
37 (1991), 145–151.

[31] LINDORFER, M., KOLBITSCH, C., AND COM-
PARETTI, P. M. Detecting environment-sensitive
malware. In Recent Advances in Intrusion Detec-
tion (2011), Springer, pp. 338–357.

[32] MALWARE DON’T NEED COFFEE. Guess
who’s back again ? Cryptowall 3.0. http:

//malware.dontneedcoffee.com/2015/01/gu
ess-whos-back-again-cryptowall-30.html,
2015.

[33] MARTIGNONI, L., STINSON, E., FREDRIKSON,
M., JHA, S., AND MITCHELL, J. C. A lay-
ered architecture for detecting malicious behaviors.
In Recent Advances in Intrusion Detection (2008),
Springer, pp. 78–97.

[34] MICROSOFT, INC. File System Minifilter Drivers.
https://msdn.microsoft.com/en-us/li
brary/windows/hardware/ff540402%28v=

vs.85%29.aspx, 2014.

[35] NIKIFORAKIS, N., BALDUZZI, M., ACKER,
S. V., JOOSEN, W., AND BALZAROTTI, D. Ex-
posing the lack of privacy in file hosting services.
In Proceedings of the 4th USENIX conference on
Large-scale exploits and emergent threats (LEET)
(March 2011), LEET 11, USENIX Association.

[36] O’GORMAN, G., AND MCDONALD,
G. Ransomware: A Growing Menance.
http://www.symantec.com/connect/blo
gs/ransomware-growing-menace, 2012.

[37] PAYLOAD SECURITY INC,. Payload Security.
https://www.hybrid-analysis.com, 2016.

[38] RAY SMITH. Tesseract Open Source OCR Engine
. https://github.com/tesseract-ocr/tesse
ract, 2015.

[39] REAQTA INC,. HyraCrypt Ransomware.
https://reaqta.com/2016/02/hydracrypt-
ransomware/, 2016.

[40] ROSSOW, C., DIETRICH, C. J., GRIER, C.,
KREIBICH, C., PAXSON, V., POHLMANN, N.,
BOS, H., AND VAN STEEN, M. Prudent practices
for designing malware experiments: Status quo and
outlook. In Security and Privacy (SP), 2012 IEEE
Symposium on (2012), IEEE, pp. 65–79.

[41] SCHULTZ, M. G., ESKIN, E., ZADOK, E., AND
STOLFO, S. J. Data mining methods for detec-
tion of new malicious executables. In Security and
Privacy, 2001. S&P 2001. Proceedings. 2001 IEEE
Symposium on (2001), IEEE, pp. 38–49.

[42] STINSON, E., AND MITCHELL, J. C. Character-
izing bots remote control behavior. In Detection of
Intrusions and Malware, and Vulnerability Assess-
ment. Springer, 2007, pp. 89–108.

[43] SUNG, A. H., XU, J., CHAVEZ, P., AND MUKKA-
MALA, S. Static analyzer of vicious executables
(save). In Computer Security Applications Confer-
ence, 2004. 20th Annual (2004), IEEE, pp. 326–
334.

[44] SYMANTEC, INC. Internet Security Threat Report.
http://www.symantec.com/security respons

e/publications/threatreport.jsp, 2014.

[45] THE CYBER THREAT ALLIANCE. Lucrative Ran-
somware Attacks: Analysis of Cryptowall Version
3 Threat. http://cyberthreatalliance.org/c
ryptowall-report.pdf, 2015.

[46] TRENDLABS. An Onslaught of Online Banking
Malware and Ransomware. http://apac.trend

15

micro.com/cloud-content/apac/pdfs/secur
ity-intelligence/reports/rpt-cashing-i

n-on-digital-information.pdf, 2013.

[47] VASUDEVAN, A., AND YERRABALLI, R. Co-
bra: Fine-grained malware analysis using stealth
localized-executions. In Security and Privacy, 2006
IEEE Symposium on (2006).

[48] VIGNA, G. From Anubis and Wepawet to
Llama. http://info.lastline.com/blog/from
-anubis-and-wepawet-to-llama, June 2014.

[49] WANG, Z., BOVIK, A. C., SHEIKH, H. R., AND
SIMONCELLI, E. P. Image quality assessment:
from error visibility to structural similarity. Im-
age Processing, IEEE Transactions on 13, 4 (2004),
600–612.

[50] XU, J.-Y., SUNG, A. H., CHAVEZ, P., AND
MUKKAMALA, S. Polymorphic malicious exe-
cutable scanner by api sequence analysis. In Hybrid
Intelligent Systems, 2004. HIS’04. Fourth Interna-
tional Conference on (2004), IEEE, pp. 378–383.

[51] YIN, H., SONG, D., EGELE, M., KRUEGEL, C.,
AND KIRDA, E. Panorama: capturing system-wide
information flow for malware detection and anal-
ysis. In Proceedings of the 14th ACM conference
on Computer and communications security (2007),
ACM, pp. 116–127.

[52] YUILL, J., ZAPPE, M., DENNING, D., AND
FEER, F. Honeyfiles: deceptive files for intru-
sion detection. In Information Assurance Work-
shop, 2004. Proceedings from the Fifth Annual
IEEE SMC (2004), IEEE, pp. 116–122.

A Benign Applications Used in Experi-
ment One

Application Main Capability Version

7-zip Compression 15.06
Winzip Compression 19.5
WinRAR Compression 5.21
DiskCryptor Encryption 1.1.846.118
AESCrypt Encryption —
Eraser Shredder 6.2.0.2969
SDelete Shredder 1.61

Table 5: The list of benign applications that generate
similar I/O access patterns to ransomware.

16

