Rise of the iBots: Owning a telco network

Collin Mulliner and Jean-Pierre Seifert
Security in Telecommunications
Technische Universitiat Berlin and Deutsche Telekom Laboratories
D-10587, Berlin, Germany

collin, jpseifert@sec.t-labs.tu-berlin.de

Abstract

The undoubted success of very powerful and per-
vasively IP enabled cellular phones raises the obvious
question whether the cellular world will also enter a se-
vere security crisis like the PC itself. Moreover, this se-
rious question is amplified through the use of new Open
and even Web-OS oriented phone platforms. Consider-
ing the most dangerous security threat which might be
given in the form of cellular botnets, a very recent paper
measured already the potential impact of such a hypo-
thetical botnet. While this theoretical work of Traynor
et al pointed out some intrinsic challenges of a cellular
botnet, they emphasized the significant threats of such
botnets for the core network.

Unfortunately, this paper shows that this new attack
vector is quite real. Indeed, we describe a cellular
botnet and our solutions to the cellular challenges. In
addition to that we also sketch and evaluate our real
implementation on the world’s most popular smart
phone - the iPhone. Qur devastating results, clearly
ring an alarm for urgent cellular phone protection
mechanisms.

Keywords: Smart Phones, Malware, Botnet, Worms,
P2pP, SMS.

1 Introduction

It is clear that mobile and smart phones are the fu-
ture of personal computing — just as the personal com-
puter was many years ago, and additionally also their
IP connectivity follows this trend, i.e., more and more
phones have a pervasive IP connectivity, i.e., WiFi,
GPRS, EDGE, 3G, etc.

Sadly enough, this success of an (almost) single
platform architecture (mainly MS Windows-based) in-
stalled on a nearly infinite number of IP-connected

PC’s has led to an unforeseen security crisis for the
PC platform which culminated in one of the largest
security threats for the IP world: large scale criminal
botnets, cf. [1].

Given this similarity between the PC platform and
the emerging (and dominating) smart phone platforms
like iPhone, Android (Google) phone, and Windows
Mobile, it is a legitimate question whether the cellular
world could also enter a severe security crisis like the
PC itself? Especially, we are interested in answering
this question with regard to the existence of practical
and functional cellular botnets.

The practical existence question is especially impor-
tant, as the theoretical threat of cellular botnets was
just recently investigated and emphasized by Traynor
et al [1] — simply assuming the theoretical existence
such botnets. Moreover, their focus was on the se-
curity impact for the fragile and complicated cellular
architecture on which we are all depending on — day
by day. Their main research result showed that a rel-
atively small number of cellular bots can already force
the collapse of a targeted victim core network. Inter-
estingly, they smoothly concluded that the challenges
for a functional and large-scale cellular botnet are note-
worthy and that such botnets might not be too quickly
seen in the wild.

Thus, the present paper perfectly complements their
research from the cellular platform side, as we solve
their cellular challenges and describe the architecture
and even the implementation of a practical and simply
realizable cellular botnet for the iPhone.

Especially, we show how we designed, implemented
and evaluated an iPhone-based mobile botnet. We did
this to understand what it takes to build a botnet that
resides on mobile phones and on a mobile phone net-
work. We think this is an important first step in order
to start thinking about urgently needed counter mea-
sures for mobile phone botnets.

We started by following the current developments in
botnet research and built a peer-to-peer (P2P) based
mobile phone bot. The P2P bot was quite simple to
design and implement, and, therefore, presents an easy
path for an unskilled botmaster.

Diving deeper in to the specifics of mobile phone
botnet we further created a Short Message Service
(SMS) [2] based bot. A bot that can be controlled
entirely via SMS. We further improved our SMS bot
by turning it into a hybrid of SMS and HTTP in order
to reduce the number of SMS messages that need to be
sent for controlling the bots.

In the end we showed how powerful a mobile phone
botnet could be if one combines the P2P with the
SMS-HTTP hybrid approach. A bit frightened by the
success of our cellular bots we recognized that this
hybrid bot would be very hard to be detected and
stopped if controlled by a skilled botmaster. Thus,
we also stopped our further research at this point as
our main questions and motivations were completely
solved.

Our research produced the following main contribu-
tions:

e We showed a cellular botnet architecture and even
evaluated it with several practical implementa-
tions.

e We solved the environmental challenges of such
cellular botnets.

e We implemented and evaluated a P2P-based com-
mand and control mechanism for mobile phone
botnets. Our bot implements the Kademlia P2P
protocol and joins the Overnet network.

e We designed, implemented, and evaluated multi-
ple SMS-based C&C mechanisms. The SMS ap-
proach raises the bar for the anti-botnet commu-
nity.

e We created communication strategies for mobile
phone-based botnets. The strategies are designed
to increase the stealthiness of mobile phone bot-
nets.

The rest of this paper is structured in the follow-
ing way. In Section 2 we show how easy it can be to
hijack many thousand iPhones using the Internet. Sec-
tion 3 discusses the intrinsic challenges that cellular
networks pose for botnets. In Section 4 we present our
command and control mechanisms for mobile botnets,
while Section 5 continues elaborating on our communi-
cation strategies for mobile phone botnets. Eventually,
Section 6 details our proof-of-concept implementation

of our mobile bots including a self-critical evaluation.
Finally, Section 7 draws some important conclusions.

2 Howto
iPhones

hijack many thousand

In November 2009 somebody exploited the facts that
jailbroken' iPhones get a default root password as-
signed, often have the secure shell daemon (sshd) in-
stalled, and get an public IP address assigned to create
a mobile phone worm. The worm was named Tkee.A [3]
and infected around 21.000 iPhones within two weeks
by simply copying itself via secure copy (part of ssh)
from iPhone to iPhone. Later somebody added a very
simple command and control mechanism to Tkee to turn
it into a botnet, this botnet was called Tkee.B. The
command and control mechanism was simply polling a
webserver to download and run a shell script.

This example shows how easy it is to hijack many
thousand mobile phones through the Internet without
any special knowledge about mobile phones or mobile
phone security. Therefore we believe that this was just
a first taste of what will happen in the future. Also
if you look at vulnerabilities like [4] through witch an
iPhone could have been hijacked through SMS it be-
comes clear that mobile botnets are sure to come to
existence.

3 Cellular Challenges

Mobile and smart phones present a number of chal-
lenges that need to be meet in order to design a botnet
that is able to exist and thrive in the mobile phone en-
vironment. The problems range from: 1) limited run
time due to the use of batteries as the power source, to
2) connectivity problems due to the absence of public
IP addresses, 3) constant change of connectivity, 4) the
problem of diversity of mobile phone platforms, and 5)
the costs of mobile communication. In the following
we will discuss these problems in further detail.

3.1 Absence of public IP addresses

Public IP addresses are needed for direct communi-
cation of bots. Without public IP addresses an in-
termediate communication hub is required, unfortu-
nately most mobile phone service operators put their
customers behind a NAT? gateway and thus the de-
vices are not directly reachable. Although the attack
vector presented in Section 2 shows the picture of a

Thttp://en.wikipedia.org/wiki/Jailbreak_(iPhone_OS)
2Network Address Translation

mobile operator providing public IP addresses to cus-
tomer phones, this is not the common case. Even if
a mobile operator chooses to provide public IPs to his
customers, mobile phones will still sit behind a NAT
gateway for many hours during the day. This is the
time the user spends at home where his phone is con-
nected to the local wireless lan in order to benefit from
higher Internet speeds and to lower the services charges
by using his DSL or cable line.

3.2 Platform diversity

The size of a mobile phone botnet will be relatively
small compared with botnets based on hijacked desk-
top computers. The main reason for the size limitation
is related to the diversity of mobile phone platforms,
therefore we think each mobile phone botnet will be
targeted towards a specific device, platform, or plat-
form version. Due to the small number of bots in a
mobile phone botnet it will be hard and maybe impos-
sible to build an independent communication infras-
tructure such as P2P network that exclusively consists
of hijacked mobile phones.

3.3 Constant change of connectivity

Constant change of connectivity is something that
is normal for a mobile phone compared with a desktop
computer that is connected to the Internet via a DSL
line. The connectivity of a mobile phone changes for
many reasons. First, mobile phones move around the
physical world. Their wireless connection comes and
goes depending on the position of the device and the
available type of mobile network capabilities. GPRS
vs. EDGE vs. 3G. Individual phones might be discon-
nected for a relatively long time even though the phone
itself is powered up. Second, is the earlier mentioned
use of local wireless networks, this again would change
the connectivity properties of a mobile bot. Therefore,
a mobile phone botnet is likely to be very unstable in
terms of the size and the kind of network connectivity
of an individual node. Table 1 shows the connectivity
times of the mobile phones of the authors and some of
their colleagues.

3.4 Communication Costs

In the world of mobile telecommunication most
types of communication result in costs for the ones
who communicate. These costs have to been taken into
account when designing a botnet Command and Con-
trol mechanism since a significant rise of the phone bill
will lead to investigation of the cause and thus may

| Connectivity | Hours |
WiFi Early morning (still at home)
GSM/3G Morning (travel to work/school)
GSM/3G Day time (while at work/school)
WiFi Early evening (back at home)
GSM/3G Early Night (going out)
WiFi Night (bed time)

Table 1. Connectivity times.

lead to detecting the bot infection. Especially interest-
ing is SMS, since here each message sent costs money.
Also deepening on the type of mobile phone contract
SMS messages can be completely free when sent to
subscribers on the same network. Further things such
as roaming has to be considered since the charges for
communication are significant higher during roaming.
Mobile-data usage might be disabled during roaming
but services like SMS still work. A mobile phone bot
therefore might need to query the roaming status in
order to fit in with the other applications running on
the device.

4 C&C for Mobile Botnets

Command and Control (C&C) is the most impor-
tant part of a botnet. For the botmaster it is the path
to deliver commands to his botnet and for the defender
it is the major attack vector in order to dismantle and
destroy a botnet. The C&C channel therefore has to be
carefully designed to be reliable for command delivery
as well as resilient against many kinds of attacks.

In [5] the authors use Bluetooth as the transport
channel for Command and Control of their mobile
phone botnet. We believe that a botnet based on lo-
cal wireless communication will be large enough to be
of any use for a botmaster, therefore, we focus our re-
search on Internet and mobile phone network based
C&C.

Over the past years there has been some major de-
velopment in botnet C&C, earlier botnets used IRC
(Internet Relay Chat) for C&C but today most bot-
nets use some kind of P2P scheme for C&C [6].

In our work we have followed two major paths for
C&C. First, we evaluated a P2P-based approach since
this seems to be the current overall trend in botnet
research. Also we did not create our own P2P net-
work as suggested in [7]. The second path we followed
is a SMS-based approach. We chose SMS because we
think that SMS communication is much harder to ob-
serve, analyze and disrupt by security researchers and

the anti-botnet community, and, therefore, it is likely to
be chosen as the C&C channel by knowledgeable botnet
creators. We actually designed two SMS-based C&C
mechanisms to get a broader overview of the possibili-
ties and problems of SMS-based bot communication.

In the following we will first discuss the P2P-based
approach since it is a bit simpler than the approach
based on SMS. Before we discus the actual C&C chan-
nel we briefly talk about the additional required fea-
tures in order to secure the commands sent over the
C&C channel.

4.1 Securing the C&C Communication

In order to protect the commands sent over the
Command and Control channel from tempering all
commands carry a digital signature using public-key
cryptography. Further to prevent replay attacks, com-
mands carry a sequence number. Only commands that
carry a sequence number that is higher then the one
from the last accepted command will be accepted as a
valid command.

4.2 Peer-to-peer C&C

For our P2P-based approach we choose Kademlia [8]
as the protocol and Overnet® as the P2P-network to
join. We chose to rather join an existing network in-
stead of creating our own because of the mobile phone
related problems and issues that we discussed in Sec-
tion 3. The main reason being the unavailability of a
stable set of public IP addresses.

The basic design idea for our P2P-based Command
and Control channel is to use the P2P network as a
kind of rendezvous point. The P2P network is only
used as a basic communication channel using the pub-
lish and search functionality of the distributed hash
table (DHT). The botmaster publishes a command to
the P2P network and the bots search for a specific
key in order to retrieve the command. The publish and
search functionality is solely based on functionally of-
fered through the DHT, and, therefore, no actual file
sharing functionally needs to be present on either the
botmaster nor the bot side. Figure 1 shows a high level
view of a P2P-based mobile phone botnet.

Battery consumption plays a very important role in
the mobile phone world, therefore it is very important
for a mobile phone bot to not drain the battery signif-
icantly. A significant battery drainage will otherwise
lead to detection of the bot rather easily. Battery drain
is mostly related to two operations, high CPU load and

3http://en.wikipedia.org/wiki/Overnet

. Kademlia (P2P)

J‘
NP

Figure 1. Kademlia P2P C&C.

heavy radio usage. Our main concern is the radio us-
age. In order to reduce the network activity of our bot
it connects only briefly to the P2P network to search
for the key that results in the command from the bot-
master. After the search, the bot quickly disconnects
from the P2P network. Initially we designed the bot
in a way that it connects to the peer-to-peer network
about every 15 minutes. Upon connection it waits until
the connection has stabilized and is ready to fire search
queries (this seems to take between 30-60 seconds). In
a 20 second interval in searches three times for the ren-
dezvous key and then disconnects. This communica-
tion pattern is very similar to a background email poll,
and, therefore, should not cut to deep into battery con-
sumption. For times where the botmaster needs faster
responds times for his botnet he can issue a command
that changes the time interval of connecting to the P2P
network. The interval can of course also be increased
for less battery consumption and lower responds times
(for times where the botnet is not heavily used).

4.3 SMS C&C

In this section we present our two SMS-based C&C
mechanisms. Both schemas are based on the fact that
the botmaster has a complete list of bots or actually a
list of phone numbers that correspond to the bots, at
all times.

Below we will first provide a brief introduction to
the Short Message Service, then we will discuss each
SMS C&C schema and finally we will briefly talk about
obfuscation of the C&C SMS messages.

4.3.1 The Short Message Service

is one of the basic services of the mobile phone network.
SMS is used for text messaging by users and for back-
ground services that are not directly visible to the user.
SMS supports transport of binary data, and, therefore,
can be used to send arbitrary data such as Command
and Control information for a botnet. Although SMS
messages are limited to 140 octets each, we show that
this is enough for a highly flexible and secure botnet
communication. In this paper we will not discuss the

details of the Short Message Service itself and will stick
to the parts that are important for the design of the
C&C channel.

The basics of SMS communication are. The sender
only needs to know the phone number of the receiver in
order to send him a message. To send a message, the
sender encodes the phone number together with some
flags and the payload in to the SMS PDU format and
hands it over to the mobile phone modem using the
GSM AT command set. The modem takes care about
delivering the message to the mobile phone network. In
the network SMS messages are handled by the Short
Message Service Center (SMSC). The SMSC forwards
the message to the receiving mobile phone. If the re-
ceiving mobile phone is switched off the SMSC buffers
the message until the receiver is switched back on. The
receiver, upon reception of the SMS, extracts the pay-
load from the PDU. The payload is just a number of
octets at the end of the PDU.

4.3.2 SMS-only C&C

In this scenario all communication from the botmas-
ter to the botnet is carried out over SMS. There are
a few exceptions such as an update of the bot soft-
ware or data transfer back to the botmaster which are
still carried out over IP. Sending SMS messages costs
money in most cases (see our discussion on SMS in
Section 3.4), therefore it does not make sense for the
botmaster to send messages to each bot directly. In
this section we describe our SMS-only communication
schema. We separated the schema in four parts: infec-
tion, communication, repair, and management.

e Infection takes part in three steps. In the first
step the bot-software is installed on the hijacked
phone using a software or configuration vulnera-
bility. In the second phase the newly installed bot
sends an SMS message to its infector, the infector
provides his own phone number during bot instal-
lation. The SMS is sent in order to determine the
phone number of the new bot. Sending a SMS
message is the only reliable way to determine the
phone number of a mobile phone, since it is not
necessarily stored on the SIM card or on the phone
itself. In the third and last step the infector dumps
his list of phone numbers of devices he infected to
a drop-site to be collected by the botmaster.

o Communication takes place in a tree model as
shown in Figure 2. Meaning the botmaster sends
a command message to the root node of his bot-
net. Each individual bot forwards the message to
all bots known to them.

Figure 2. SMS only C&C.

e Repair takes place after the botmaster determined
that the communication tree has broken at some
point. In order to determine if the tree is intact
once in a while the botmaster sends a broadcast
ping that every node needs to answer. Nodes that
fail to answer the ping message are removed from
the tree. If a none leave node is removed all its
sub-nodes are reassigned to other nodes. This is
done by sending a message containing a list phone
number(s) to an active node. Since the botmaster
has at any time a complete overview of his botnet
he can carry out a more intelligent repair phase
by checking smaller sub-trees instead of the whole
tree (the whole botnet) at once.

o Management of the botnet is required since it must
be taken care of that a single node does not have
too many direct sub-nodes. Each direct sub-node
will require one SMS message to be send to in
case of a message being forwarded. Further if a
node with many direct sub-nodes disappears all
the direct sub-nodes need to be moved to another
node, leading in more SMS messages being sent.

In the ideal case the botmaster only needs to send
out one SMS message to reach every node in the bot-
net, also he might not even need to send the message
himself but rather have a hijacked phone send the ini-
tial message.

The SMS only design has a weak point, that is the
existence of node lists (phone numbers) in most of the
bot hosts. Therefore, making it easy for an attacker or
anti-botnet researchers to warn the individual owner
of an infected phone by simply sending him an SMS
message. In order to partially prevent this from hap-
pening and to improve and ease the management and
repair steps we designed a SMS-HTTP hybrid commu-
nication schema. This schema is discussed in the next
Section.

4.3.3 SMS-HTTP hybrid

After realizing that a SMS-only-based Command and
Control channel bears certain problems and the fact
that IP communication is still required to accomplish
any meaningful data transfer we designed a SMS-
HTTP hybrid C&C channel for our mobile phone bot-
net.

The SMS-HTTP hybrid design additionally im-
proves the SMS-only design in following ways. First,
it removes the necessity to keep information about the
botnet at each of the nodes. Therefore, making it a
bit more resilient against attacks. Second, it eases the
botnet management and repair by moving these task
from the botnet to the botmaster. Third, it splits up
the botnet in to multiple subnets and thus makes it
harder to be detected.

The hybrid schema shares many properties of the
SMS-only schema. The infection part of the hybrid
schema works in exactly the same way. The only dif-
ference is that both, the newly infected bot and the
infector, do not store the phone number of each other.
The newly infected bot deletes the phone number of its
infector after sending him the SMS message to deter-
mine his own phone number. The infector deletes the
phone number of the newly infected phone right after
dumping it at the drop-site in order to be collected by
the botmaster.

The basic idea of the hybrid schema is to split the
communication in to a HT'TP and an SMS part. Com-
mand SMS messages are pre-crafted by the botmaster
and are uploaded as encrypted files to some website.
The URL to these files are then sent to random bots of
the botnet via SMS. The bots download and decrypt
the files and sent out the pre-crafted SMS messages.
The encryption key is part of SMS message that con-
tains the URL to the file. Figure 3 shows the three
steps of the SMS-HTTP hybrid communication. In a
decent sized botnet the first round of pre-crafted SMS
messages could again contain URLSs to another batch of
pre-crafted command messages. Due to the fact that
in the SMS-HTTP hybrid there is no fixed structure
through that all communication is happening it is quite
hard to determine if a botnet is active on a mobile
phone network by just looking at the SMS traffic.

The repair part of the hybrid schema works in the
same way as the repair part of the SMS-only schema.
The botmaster has to regularly probe each bot to de-
termine if it is still part of the botnet. The difference
is that the botmaster does not need to move individual
bots around the botnet in order to keep them in the
working communication tree. Hosts that are no longer
part of the botnet are just removed from the global bot
list and thus are not considered the next time a com-

@-@-;

o

Figure 3. SMS-HTTP hybrid C&C.

mand is sent out to the botnet. The management part
as such does not exist in the hybrid design.

4.3.4 Obfuscation

one idea for obfuscation is to encrypt all C&C SMS
messages with a symmetric key. The key would be
globally known by all bots, and, therefore, it will not
prevent reverse engineering or off-line command anal-
ysis. But it will make life much harder for the mobile
operators to filter out the messages, since they can not
really tell what kind of message they see. To prevent
hard coding of the key in to any IDS and anti-virus
system there will be regular key updates. The key up-
dates must be frequent enough so that C&C message
parsing is required in the IDS. This will make it more
costly to keep track of the botnet.

5 Communication Strategies

Communication is the most important part of a bot-
net, especially on a mobile phone since mobile phones
have limited resources. A battery that drains faster
than it used too, a high phone bill, slow or clogged 3G
data can easily lead to detection and removal of the
bot. In this Section we discuss our ideas for how a
mobile phone botnet should carry out it’s communica-
tion in order to stay hidden and still have maximum
functionality.

5.1 IP-based communication

Even with a SMS-based C&C channel a bot still re-
quires IP-based communication in order to transport
larger chunks of data to and from the hijacked device.
The data can be anything ranging from harvested in-
formation to a software update of the bot itself.

The problem with bulk data transfer on mobile
phones is that the mobile connection can be slow, and,
therefore, the transfer will take time and thus becomes
detectable by the user. Especially if the user is also

trying to use the network connection at the same time.
If done regularly the costs might show up on the phone
bill.

Internet peer-to-peer based botnets will more or less
constantly communicate using IP packets, therefore,
in order to decrease the possibility for detection the
IP-based communication should be kept as hidden as
possible.

We developed some strategies for IP-based commu-
nication for mobile botnets in order to keep the bots
as hidden as possible. The main idea is to communi-
cate mainly using the mobile phone network since this
is somewhat harder to monitor. Bulk data should only
be transfered using WiFi, if possible.

First, a bot should only initiate a bulk data trans-
fer when connected through WiFi or a high speed 3G
network. The 3G network should only be used if the
bot some how determined that the phone it is running
on has not used any WiFi network for some amount
of time. This might be necessary since some mobile
phone users will not pay for mobile-data usage, and,
therefore, will not bother to use WiFi at all.

Second, all background communication (such as P2P
chatter) should be carried out over the 3G network.
The P2P chatter does not produce any significant
amount of traffic. Also file transfer is not happening
at all. This is in order to avoid detection of P2P traffic
on the WiFi and DSL link. Also we anticipate that
mobile phone network operators do not really monitor
the traffic on their network. At least not traffic that
does not require a lot of bandwidth, such as the P2P
chatter.

Third, all bulk data transfer should be carried out
using HTTP. This is to avoid blocked ports and any
kind network monitoring.

5.2 SMS-based communication

Each SMS sent might produce costs on the sender
and on the receiver side, depending on the contract.
Therefore, we created a set of rules in order to reduce
the number of SMS messages to send. Also not only
the number of messages sent need to be considered but
also the destination of the message. Destinations such
as foreign countries are likely to be more expensive,
but also phone numbers that are routed on another
operators network could introduce more costs.

In order to design a useful strategy for sending SMS
messages one has to analyze the most common mo-
bile phone contracts that are attached to the targeted
mobile platform. For example a big German mobile
operator offers four different contracts for the iPhone.
Only the contract with lowest monthly rate charges for

individual SMS messages. The other contracts include
free SMS messages sent within the same network. The
contract with the highest monthly charges include 3000
SMS messages sent to any destination.

Taking these facts into account we came up with a
simple rule for SMS communication. Grouping of bots
by country and by operator. Limit sending SMS mes-
sages between these groups to a minimum. Messages
sent within an operator can be considered free.

Determination of country is easy because of the
country code. Determination of the operator is a bit
more complex. In certain countrys this can be done by
looking at the mobile number area code. If it is not
possible to determine the operator from the area code
each bot can still query the SIM card for the operator
name.

This information needs to be communicated back to
the botmaster. This could be done during infection
time since here the infector has to deliver the phone
number of the new bot to the botmaster anyways.

5.3 Data delivery

Mobile phone resident bots have access to interesting
data. In order to transport data from the device back
to the botmaster the bot encrypts the data to avoid
detection during either transport or through a raid on
the drop-site. The encryption is done using public key
cryptography to prevent data decryption by extracting
the key from a bot infected phone. Therefore, each
bot carries the botmasters public key and uses it to
encrypt a random symmetric key that is used for data
encryption.

6 Bot Implementation

We created a proof-of-concept implementation of
our bot design. The implementation includes both
the SMS and the P2P-based Command and Control
schemas.

We begin with a general description of how
command-packets are structured in our botnet. The
packet-format is designed in a way that fits both the
P2P and SMS-based approaches. We chose to do this
since our overall goal was to build a super-hybrid bot
that features both C&C schemas. This way the botnet
becomes more flexible and very hard to disrupt. The
actual implementations are still separated but with
spending a little more time on the implementation the
super-hybrid bot can be easily build.

The two bots basically are composed of a single exe-
cutable, a ECC public key to be used for command au-
thentication using ECDSA, and a RSA public key for

| Content | Bytes |
Signature length 1
ECDSA Signature | variable
Sequence Number 4
Command Type 1
Command variable

Figure 4. Basic command structure.

encrypting data sent from the bots to the botmaster.
The P2P version additionally carries a initial peer-list
for the Overnet P2P network. The SMS-client carries
an additional dynamic link library for library injection.

6.1 Commands

Commands are composed out of four elements,
shown in Figure 4. The command type, the command
itself, a sequence number, and a signature. The com-
mand type simply specifies what kind of command the
packet contains, this can be a shell sequence such as
ping -c 3 www.wired.com. We will discuss some of
the important command types later. The sequence
number is a 32-bit counter to prevent replay attacks of
commands. The bot will only execute commands with
a sequence number higher then the one he has stored.
The command packeted is signed and the signature is
stored in the packet. The signature guarantees that
only the botmaster can send commands to the botnet.
In order to keep the command packets as small as pos-
sible ECDSA [9] is used for signing. ECDSA signatures
are between 70 and 72 bytes, and, therefore, fit in to
SMS messages while still leaving space for the actual
command. In order to be able to use ECDSA on the
iPhone we had to build our own versions of libssl and
liberypto, these were statically linked to our bot exe-
cutable.

6.2 Kademlia P2P Client

We based our peer-to-peer bot on the KadC?
Kademlia implementation. We chose KadC because it
has no dependencies other than a minimal POSIX API
which makes it highly portable. In theory one should
be able to compile it for all current smart phone operat-
ing systems (including Android, Windows Mobile and
Symbian). Further KadC only implements the DHT
and not the file transfer part of the P2P network, thus
making it the perfect candidate for our purpose. Below

4http://kadc.sourceforge.net/

we discuss how we use Kademlia and Overnet as our
C&C channel.

Once our bot joins the network it starts searching
for a specific hash every 15 minutes. In order to send a
command to the botnet the botmaster publish a entry
in the DHT using the hash the clients search for. The
command is transported using the meta information
that can be published together with the hash. If the
hash is found the client extracts the command from
the meta information. The command-data is stored
inside the meta information returned with the search
result. Since Kademlia only seems to support ASCII
data in meta information the command-data is based64
encoded. Although we had to change the actual alpha-
bet used for encoding since Kademlia does not support
uppercase characters.

6.3 SMS Client

We implemented the SMS bot-client to
piggy back on the iPhone’s telephony stack
(com.apple.CommCenter). This was done using
library pre-loading to sit between the iPhone’s modem
and the telephony stack in order to intercept SMS
messages before the SMS application sees them.
We use the technique that is described in [4]. The
technique also works on other smart phone platforms
such as Android and Windows Mobile, therefore we
think this is a reasonable approach. The pre-loaded
library monitors open(2) calls and replaces the file
descriptors for the modem lines with file descriptors
connected to the actual bot application. Thus all
AT commands and results to and from the modem
first pass through the bot. If the bot recognizes an
incoming SMS message it tries to parse it, if the
parsing is successful the SMS is so to say swallowed
and not passed on to the telephony stack. All other
SMS messages are passed on. Therefore, the control
SMS messages never touch the SMS application or
SMS database and stays hidden.

Sending SMS messages is done by issuing AT com-
mands to the modem device (/dev/tty.debug). This
again is not seen by the user in anyway since the SMS
message is not handled by the telephony stack.

6.4 Evaluation

We evaluated our bot design and implementation by
installing the bot on a number of iPhones in our lab.
The bot did not have any kind of spreading function-
ality implemented in order to make sure it does not
escape our test environment. Also the evaluation was

focused on the Command and Control (C&C) function-
ality, rather than the infection routines.

The evaluation was conducted by running the bot
and sending it commands, either via the P2P network
or directly via SMS. We constantly monitored the bot
activity in order to determine if the commands were
successfully received and executed. We did not only
sent correct commands to the bots but also commands
with broken signatures and invalid sequence numbers.

For evaluation we implemented a number of com-
mands, these are:

e Add phone number(s). This command adds a list
phone numbers to the forwarding list of a bot.

e Set sleep interval. This command is used to set the
sleep time between connecting to the P2P network
for searching for commands.

o Fxecute shell sequence. This command is used to
execute a shell sequence.

e Download URL. This command is used for the
SMS-HTTP hybrid to download a command file.
Besides the URL the command also includes a 128-
bit key which is used to decrypt the downloaded
file.

Below we will first discuss the P2P-based approach
followed by the SMS and SMS-HTTP hybrid design.

6.4.1 Kademlia P2P

We evaluated two scenarios, one where the devices are
connected to the Internet via WiFi and one where the
devices are connected using a mobile-data connection.
The botnet was controlled by a special version of the
bot that can issue commands, this version was running
on a laptop connected to the university network.

We ran several tests where we executed shell com-
mands and changed the sleep interval for connecting to
the P2P network. A basic test was to ping one of our
servers on the Internet, here we could easily monitor
that all our bots actually executed the command.

All in all we where more then satisfied with the per-
formance of our P2P bot-client, especially since it was
rather easy to implement.

6.4.2 SMS and SMS-HTTP hybrid

In order to evaluate and test the SMS-based C&C de-
sign we implemented a small tool that crafts a com-
mand SMS message for our botnet. The tool takes the
phone number, the type of command, and the com-
mand parameters as input and generates a ready to

send SMS PDU. The PDU can then either be sent via
the GSM AT command-set or be stored in a file to be
used for the SMS-HTTP hybrid C&C mechanism.

We ran a number of tests in order to verify that our
SMS C&C mechanism actually works. We again ran
the ping-based test to verify that commands with a cor-
rect signature and sequence number are accepted. We
further verified the basic functionality of file downloads
by submitting a URL download command. Forwarding
of command messages also worked as expected.

7 Conclusions

Through our work we confirmed that the threat of
mobile botnets as pointed out by Traynor at al [1] is
real and concrete. We determined that it is easily pos-
sible to create a fully functional mobile phone botnet
on the most popular smart phone — Apple’s iPhone.
A mobile phone botnet has many similarities with a
desktop computer based botnet but also has certain
properties that need to be considered in order to keep
the botnet running and hidden. We investigated those
cellular specific challenges and properties. We deter-
mined that the hybrid approach of SMS and HTTP is
the most promising and most dangerous botnet Com-
mand and Control structure. Our successful mobile
bot implementation stresses that this mobile specific
hybrid approach would require very specific and diffi-
cult counter measures from a telco. The reason is that
two totally different cellular subsystems, i.e., SMS and
IP, would be needed to monitor and synchronized for
specific, but yet unknown events and messages. This
would cause cumbersome burdens for a telco to detect
and prevent such mobile botnets. Given our prelimi-
nary but devastating results from our research journey
we feel that there is an urgent need for novel and ap-
propriate cellular phone and network protection mech-
anisms.

References

[1] P. Traynor, M. Lin, M. Ongtang, V. Rao, T. Jaeger,
T. La Porta and P. McDaniel, “On Cellular Bot-
nets: Measuring the Impact of Malicious Devices
on a Cellular Network Core,” in ACM Conference
on Computer and Communications Security (CCS),
November 2009.

[2] 3rd Generation Partnership Project. (2004,
September) 3GPP TS 23.040 - Technical realiza-
tion of the Short Message Service (SMS). http:
//www.3gpp.org/ftp/Specs/html-info/23040.htm.

3]

P.A. Porras, H. Saidi, V. Yegneswaran, “An Analy-
sis of the iKee.B iPhone Botnet,” in Proceedings of
the 2nd International ICST Conference on Security
and Privacy on Mobile Information and Communi-
cations Systems (Mobisec), May 2010.

C. Miller, C. Mulliner. (2009, Au-
gust) Fuzzing the Phone in your Phone.
http://www.blackhat.com/presentations,/bh-
usa-09/MILLER/BHUSA09-Miller-FuzzingPhone-
SLIDES.pdf.

K. Singh, S. Sangal, N. Jain, P. Traynor and W.
Lee, “Evaluating Bluetooth as a Medium for Bot-
net Command and Control,” in Proceedings of the
International Conference on Detection of Intru-

sions and Malware, and Vulnerability Assessment
(DIMVA), July 2010.

J. B. Grizzard, V. Sharma, C. Nunnery, B. B.
H. Kang, and D. Dagon, “Peer-to-peer botnets:
Overview and case study,” in Proceedings of the
Workshop on Hot Topics in Understanding Bot-
nets, April 2007.

R. Hund, M. Hamann, T. Holz, “Towards Next-
Generation Botnets,” in 4th European Conference
on Computer Network Defense (EC2ND 08), 2008.

P. Maymounkov and D. Mazi‘eres, “Kademlia:
A Peer-to-peer Information System Based on
the XOR Metric,” in Proceedings of the 1st In-
ternational Workshop on Peer-to Peer Systems
(IPTPS02), 2002.

D. Johnson, A. Menezes, and S. A. Vanstone, “The
elliptic curve digital signature algorithm (ecdsa).”
Int. J. Inf. Sec., vol. 1, no. 1, pp. 36-63, 2001.
[Online]. Available: http://dblp.uni-trier.de/db/
journals/ijisec/ijisecl.html#JohnsonM V01

10

