
Neugschwandtner & Mulliner

Practical and Efficient Exploit Mitigation for
Embedded Devices

Matthias Neugschwandtner
IBM Research, Zurich

Collin Mulliner
Northeastern University, Boston

Qualcomm Mobile Security Summit 2015

1

Neugschwandtner & Mulliner

Embedded Devices

2

Neugschwandtner & Mulliner

Embedded Devices

3

Neugschwandtner & Mulliner

Embedded Devices

• Produced in large quantities
• not a computer, but actually a computer

• Mostly low cost RISC-based CPUs
• exceptions, e.g. CPUs for high-end smart phones

• Devices run open/free software such as Linux
• Android is Linux, many Smart TVs run Linux

4

Neugschwandtner & Mulliner

Embedded Device Security

• Valuable targets
• always on
• contain interesting personal data
• control important things

• Contain software vulnerabilities
• e.g. memory corruption
• exploited like desktops and servers

5

Neugschwandtner & Mulliner

Embedded Device Security

• Valuable targets
• always on
• contain interesting personal data
• control important things

• Contain software vulnerabilities
• e.g. memory corruption
• exploited like desktops and servers

• Mitigations not state of the art!
6

Neugschwandtner & Mulliner

Mitigations: State of the Art

• Data Execution Prevention (DEP)
• make memory pages non exec ⇒ prevent code injection
• requires hardware support (emulation is slow)
• bypassed with code reuse: ret2lib, ROP, ...

• Address Space Layout Randomization (ASLR)
• move code to “unpredictable” location in memory ⇒

prevent code reuse (e.g. ROP)
• bypassed with information leak, ROP works again

• Andrea Bittau “BROP - Hacking Blind” (S&P 2013)

7

Neugschwandtner & Mulliner

Mitigations: State of the Art cont.

• Control Flow Integrity (CFI)
• detect if “code blocks” are executed “out of order”

• mitigate code reuse, specifically: ret2lib and ROP

• need access source code
• requires compiler support
• can lead to high overhead

• (Syscall) Policy enforcement
• SELinux, AppArmor, syscall anomaly detection
• per app configuration and/or learning

8

Neugschwandtner & Mulliner

Hardware and Mitigations

• Hardware support for DEP
• x86: No-eXecute (NX)
• high-end ARM SoCs: eXecute Never (XN)

• PAX can emulate DEP
• but only on IA32
• MIPS declared a “hopeless case” (https://pax.grsecurity.net/docs/pax.txt)

• Embedded CPU/SoC lack mitigation support

9

Neugschwandtner & Mulliner

(Mis)Using Hardware Features

• Many platform and architectural features,
why not use them for security?
• Advantages: precision, speed, harder to circumvent

• Last Branch Record (LBR) for ROP detection
• Vasilis Pappas “kBouncer” 2012

• PMC for mispredicted returns for ROP detect.
• Georg Wicherski “Taming ROP on Sandy Bridge” 2013

10

Neugschwandtner & Mulliner

(Mis)Using Hardware Features

• Many platform and architectural features,
why not use them for security?
• Advantages: precision, speed, harder to circumvent

• Last Branch Record (LBR) for ROP detection
• Vasilis Pappas “kBouncer” 2012

• PMC for mispredicted returns for ROP detect.
• Georg Wicherski “Taming ROP on Sandy Bridge” 2013

11

x8
6
on
ly

Neugschwandtner & Mulliner

Can we Leverage RISC Features?

• Use common hardware features for security!
• More precision, better performance, hard to circumvent

• Many RISC flavors
• ARM, MIPS, SuperH, PA-Risc, Sparc

• Use generic features ⇒ broad application
• Avoid SoC specific functionality

12

Neugschwandtner & Mulliner

RISC Architecture Features

• Register only operations
• load / store architecture

• Many registers and specialized registers
• e.g. control flow

• Fixed instruction length
• easier disassembly

• Instruction / address alignment
• no jumping into the middle of an instruction

13

Neugschwandtner & Mulliner

Goal: Bring SotA Mitigations to
embedded RISC devices

• Build “replacements” for SotA mitigations
• e.g. DEP and CFI

• Use RISC hardware features
• speed and precision

• Tailor for “binary only” / COTS
• source code is not always available

14

Neugschwandtner & Mulliner

Binary Integrity

• Exploits use OS functionality
– read/write data, launch process, …

• Exploit OS usage differs from original program
– different syscall, different parameters, ...

15

Neugschwandtner & Mulliner

Binary Integrity

• Exploits use OS functionality
– read/write data, launch process, …

• Exploit OS usage differs from original program
– different syscall, different parameters, ...

• Ensure that runtime OS usage is coherent
with OS usage in binary executable
– system call is actually used

– system call arguments match

– call chain matches
16

Neugschwandtner & Mulliner

Binary Integrity

• Exploits use OS functionality
– read/write data, launch process, …

• Exploit OS usage differs from original program
– different syscall, different parameters, ...

• Ensure that runtime OS usage is coherent
with OS usage in binary executable
– system call is actually used

– system call arguments match

– call chain matches
17

BINtegrity

Neugschwandtner & Mulliner

A Different Angle

• Policy based solutions
• AppArmor, SELinux
• what resources/OS services can be used
•

• Policy needs to be defined
• create manually or via learning
• too wide … attacker can bypass
• too narrow … app doesn’t work correctly
•

• Application update ⇒ policy update!
• otherwise application stops working

18

Neugschwandtner & Mulliner

A Different Angle

• The application binary is the policy
• binary provides all information about what it is doing*

• Enforce restrictions using the binary image
• Track program’s “runtime state”
• Compare with state extracted from binary image
• Non matching states ⇒ attack
• binary update == policy update #win

19

*information needs to be extracted and understood to be useful

Neugschwandtner & Mulliner

BINtegrity: Core Features

• DEP like functionality
• only execute code that is present on disk

• Super lightweight CFI
• extract and compare call chain with code on disk

• Syscall filter / policy
• syscall can only be invoked if application uses it

20

Neugschwandtner & Mulliner

BINtegrity: Core Features

• DEP like functionality
• only execute code that is present on disk

• Super lightweight CFI
• extract and compare call chain with code on disk

• Syscall filter / policy
• syscall can only be invoked if application uses it

21

bi
na
ry
 o
nl
y

no
 r
ew
ri
te

no
 i
ns
tr
um
en
ta
ti
on

no
 c
on
fi
gu
ra
ti
on

Neugschwandtner & Mulliner

Threat Model

• Trusted kernel
• we protect user space code

• Trusted binaries on disk
• executable and libraries not modified by attacker

• Memory is untrusted
• we try to fight off memory corruption attacks!

22

Neugschwandtner & Mulliner

BINtegrity Overview

binary
executable

BINtegrity

runtime
process

kernel OS
service

system call

launch
program

inspect
in

te
rc

ept

✔ / ✖

23

Neugschwandtner & Mulliner

Process Runtime State

• System call return address retsc
• System call information

– System call number
– System call arguments

• Link address retlr
– specific to RISC
– register containing return address of last function invocation

• Indirect jump target (on MIPS)

24

program
library

(system call wrapper)
kernel

(system call handler)

function call system call

link address return address

Neugschwandtner & Mulliner

Code Invariant Extraction

25

lui $a3, 0x46
li $a0, 7
lui $t9, mmap@plt
jalr $t9
nop

addiu $sp, -0x28
sw $ra, 0x28-4

...

link address

function
prologue

argument
assignment

bnez $a0, locA disassemble
backwards

execute
forwards

• Leightweight execution state (only registers)

• Invariants = concrete values at end of execution

function call

Neugschwandtner & Mulliner

Enforcing Integrity

• Code Provenance
– where do function invocations originate from?

• Code Integrity
– is the call chain reflected by the binary?

– do the system call arguments match the
invariants?

• Symbol Integrity
– are called system call wrappers actually imported?

26

Neugschwandtner & Mulliner

Enforcing Code Provenance

• Trusted Application Code Base (TACB)
– mapped text segments of a running process

– includes text segments of libraries

– fixated after linking stage

• Return addresses have to point to TACB
– both retsc and retlr

27

Neugschwandtner & Mulliner

Enforcing Code Integrity

• Is the predecessor of retsc really a syscall?
– has the right syscall been invoked?

• Is the predecessor of retlr really a control flow transfer?
– does the target of the branch match the callee?

• Do the actual syscall arguments match the invariants?
– does the syscall wrapper modify arguments?

28

...
lui $a3, 0x46
li $a0, 7
lui $t9, mmap@plt
jalr $t9
nop

...
lw $t0, 0xcafe
or $a3, t0
li $v0, 0x101D
syscall 0
nop

program code syscall wrapper

Neugschwandtner & Mulliner

Enforcing Symbol Integrity

• Dynamic linking uses function symbols
• Symbol mmap has to be

– exported by the library
– imported by the program

• Match
– symbol of function identified by return address
– imports of binary identified by link address

29

program library
mmap()

link address return address

Neugschwandtner & Mulliner

Exploit Mitigation

Attack class Technique Defense

Code injection

inject code in data segment code provenance

inject (and overwrite existing)
code in text segment

code integrity (instruction
mismatch)

Code reuse

use indirect jump gadget code integrity (target of
branch does not match)

symbol integrity (function not
imported)

use gadget that calls library
function

argument integrity (argument
mismatch)

30

Neugschwandtner & Mulliner

Exploit Mitigation: Code Reuse

31

...
lui $t9, write@plt
li $a0, 2
jalr $t9
nop

Indirect jump gadget

• Violates control flow integrity
– register $t9 does not match invariant

mmap

Neugschwandtner & Mulliner

Exploit Mitigation: Code Reuse

• Violates argument integrity
– runtime state value for $a0 contradicts invariant

– write can only access stdout

32

...
lui $a0, 1
jal write
nop

Fixed jump gadget

lui $a0, 12

Neugschwandtner & Mulliner

Exploit Mitigation: Code Reuse

• Violates argument integrity
– runtime state value for $a2 contradicts invariant:

RWX (7) vs. RX (5)

– mmap can only map read/write
33

...
lui $a2, 5
jal mmap
nop

Fixed jump gadget

lui $a2, 7

Neugschwandtner & Mulliner

Exploit Mitigation: Code Reuse

• Violates symbol integrity
– system is not imported by the program

34

...
lui $t9, read@plt
beq $a0, locB
li $a0, 2
jalr $t9
nop

Indirect jump gadget

system

Neugschwandtner & Mulliner

Exploit Mitigation: ROP stager

Combination of ROP and “traditional” shellcode

35

1. Use ROP for set up
a. executable memory region

(mmap and/or mprotect)
b. on MIPS: flush cache

2. Execute “traditional” shellcode
from separate memory region

Code reuse mitigation

Code injection mitigation

Neugschwandtner & Mulliner

Process

The BINtegrity System

36

BINtegrity Kernel Module

Runtime Information

Binary

Library 1…N

Emulation Engine

ELF Parser Disassembler Emulator

TACB
Invariant

Cache

State Integrity Enforcer

Neugschwandtner & Mulliner

Checking Level

• Not all functions need all checks

⇒ reduce checking to increase performance

37

Level 1 Code Provenance

Level 2 (includes L1) Code Integrity

Level 3 (includes L2) Symbol Integrity

Neugschwandtner & Mulliner

Syscalls vs Checking Levels

• 33 security critical syscalls
• 11 at checking level 2
• 22 at checking level 3

38

Neugschwandtner & Mulliner

Dynamic Library Loading

• dlopen() vs BINtegrity
• implemented via mmap()
• mmap() is a Level 3 call
• check if mmap() was invoked by dlopen()
• check if dlopen() is found in imported symbols (Level 3)

• Add new library to TACB
• no symbol integrity checks on calls to this library

39

Neugschwandtner & Mulliner

Performance Evaluation

• Buffalo Router WZR-HP-G450H (MIPS)
– Apache benchmark & nginx

– runtime overhead: 2.03%

• Galaxy Nexus Phone (ARM)
– AnTuTu benchmark

– measures Android runtime & I/O subsystem

– runtime overhead: 1.2%

40

Neugschwandtner & Mulliner

Internal Performance Evaluation

• Costly operations
– reading and parsing files

– instruction emulation

• Memory footprint
– cache invariants for < 257 code points

– 16 bytes per code point

– requires total of 12KB per process

41

Neugschwandtner & Mulliner

Performance: Caching

42

Neugschwandtner & Mulliner

Performance: Invariant Extractions

43

Neugschwandtner & Mulliner

Limitations

• Library implementation
– generic system call wrapper
– wrappers that alter arguments or use indirections
– can be solved by re-compiling libc

44

System call wrappers Bionic uClibc

Total 194 243

Using indirections 71 31

Modifying arguments 1 69

Neugschwandtner & Mulliner

Limitations

• Dynamic code loading
– reduces effectiveness of symbol integrity

• Link address validity
– could be forged
– difficult to do in practice

• forged address needs to pass integrity checks
• attacker needs to regain control

45

Neugschwandtner & Mulliner

Conclusions

• Use architectural features to improve security
• specifically for platforms without hw security features

• BINtegrity provides
• DEP like functionality
• Super lightweight CFI for binary only applications
• Syscall filter / policy extract from binary image

• Practical and efficient: only 1% - 2% overhead
• transparent to applications (supports binary only / COTS)

46

Neugschwandtner & Mulliner

Conclusions

• Use architectural features to improve security
• specifically for platforms without hw security features

• BINtegrity provides
• DEP like functionality
• Super lightweight CFI for binary only applications
• Syscall filter / policy extract from binary image

• Practical and efficient: only 1% - 2% overhead
• transparent to applications (supports binary only / COTS)

47

Thank
you!

Questions?

