
CuriousDroid:  
 

Automated User Interface Interaction for
Android Application Analysis Sandboxes  

Patrick Carter, Collin Mulliner, Martina Lindorfer,
William Robertson, Engin Kirda

02/23/2016

Android

• Most popular mobile OS
– 84.7% of 2015 Q3 mobile device sales
– 48.6% 2014 total device sales

2

* Gartner

2015 Q3 Market Share

Android
iOS
Windows
Blackberry
Others

Android Malware

• Apps appear normal to user
– Malicious functionality hidden from user

3

• Russian banking
malware
- Send SMS
- Capture images
- Record Audio
- Track GPS
- Address book
- List of recent

calls
- Etc.

Android Security

• Google Play Store
– Google Bouncer
– Doesn’t protect against 3rd party sources

• Anti-Malware applications
– Generally looking for malware signatures

• User defenses
– Permissions
– Avoid 3rd party sources

• A more robust malware analysis is necesarry

4

Malware Analysis

• Static analysis
– Safely approximates all behaviors
– False positives more likely

• Dynamic Analysis
– High-fidelity results
– Coverage is hard!

5

Android Dynamic Malware Analysis

• Coverage is even harder!
– All Android apps are event/GUI based

• Exercising application UIs is imperative for
increased coverage
– Cannot drive execution of application forward

without exercising the UI

6

Android Test Generation

• De facto tools for exercising application UIs
are the Monkey and MonkeyRunner (Google)
– Monkey: fuzzer
– MonkeyRunner: requires source code and

knowledge of application to build test
applications

• Other exercisers require either source code
(instrumentation) or take a long time to
generate exploration paths

7

CuriousDroid

• Android UI stimulation for malware
sandbox environments
– Fully automated: No human in loop
– No source code or prior knowledge of

application is necessary
– Runs on devices in addition to emulators
• Needs root

• Emulates human interactions

8

Dynamic Dalvik Instrumentation

• Method for injecting arbitrary code into a
running process
– Add additional class files to Dalvik VM

• Allows us to overwrite application and
framework methods:
– Application code is not modified
– No need to disassemble

9

System Overview

Three Phases of CuriousDroid

UI Decomposition
• Extract hierarchy

of UI elements
• Label interactive

elements

Input Inference
• Determine what

type of input each
element takes (if
any)

• Determine order of
interaction

Input Generation
• Translate inputs to

physical
interactions

• Inject inputs into
application/OS

10

Android UI

• Activity class is a way for a user to
interact with an application
– Provides window and contains the UI

elements

• UI composed of different elements:
– Containers
– Views
• Interactive: Buttons, text fields, etc
• Non-interactive: text labels, etc

11

User Interface Decomposition

• Overwrite Activity method onWindowFocusChanged()
– Called after Views drawn to screen

• Starting with the root view, recursively examine each sub-
view until all views are examined
– As each view is examined compile list of interactive views or

“widgets”
12

Input Inference

13

Input Inference

• Examine each
widget to
determine type of
interaction
– Text fields take

crafted input
– Buttons take taps,

etc.

14

EditText

EditText

EditText

EditText

EditText

CheckBox

Button

Button

Input Inference

• Use hints to
determine context
– Text labels or

textfield “hints”
– Compare to list of

keywords

• Draw from list of
predefined input
values

15

EditText

EditText

EditText

EditText

EditText

CheckBox

Button

Button

Input Inference

• Determine order to
interact with
widgets
– Top-down left-right
– nextFocus property

• Always press
buttons last!

16

Input Generation

• Translate ordered
inputs into physical
interactions
– Generate data

representing
gesture

• Separate process
writes data directly
to input driver

17

Evaluation

• Does better input generation improve
dynamic analysis?
– Dynamic behavior
– Activity Coverage

• In total 38,572 applications tested
– Apps pulled from Andrubis database
– Compare results generated by Andrubis where

input generation system is varied

18

Andrubis

• Android malware analysis system:
– Static and Dynamic analysis
• Static: requested permissions, services, broadcast

receivers. API calls used.
• Dynamic: data leaks, filesystem activity, Phone

and SMS, dynamic code loading, JNI

• Assigns score (0 – 10) for each application:

www.anubis.org
19

Results: Borderline Classification

• 8827 Apps chosen with score from 4-5
• Majority of apps reclassified to benign
• Change in score driven by increase in number

of dynamic features generated

Borderline Score

20

Results: Dynamic Behaviors

• Applications chosen for each category
contain bytecode for a given behavior
that was not exercised by Monkey

• These behaviors often seen in malware

Observed Dynamic
Behaviors

21

Results: Activity Measurements

• Activity coverage:
– Some applications have high number of Activities (up to 287)
– Some Activities only triggered under certain circumstances

• SMS received, network data

• How Activities triggered is more important!
– Valid form data passed from one to another

22

<10% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
0

1000

2000

3000

4000

5000

6000

7000

8000

Activity Coverage

of

 A
pp

lic
at

io
ns

Activity Coverage

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

90

100

of Activites

C
um

m
ul

at
iv

e
Pe

rc
en

ta
ge

 o
f A

pp
lic

at
io

ns

Cummulative Distribution Function of Activity Count

Conclusion

• CuriousDroid: a tool for automated
execution of Android Applications in an
intelligent and human-like fashion

• Geared towards high-volume malware
analysis systems that require no prior
knowledge of apps

• Our results show improved performance
over black-box fuzzing

23

Questions?

24

Test Application Execution

25

1 32

4
5

Input Generation

• Event injection mechanism running in
separate process
– Takes output from Input Generator
–Writes directly to the touchscreen input driver

• Mimics actual touch events which are then
passed to applications through the Android
framework

• OS cannot tell difference between real
and simulated touch events

26

