
Poster: HoneyDroid - Creating a Smartphone

Honeypot

Collin Mulliner, Steffen Liebergeld, and Matthias Lange

Technische Universität Berlin / Deutsche Telekom Laboratories

{collin,steffen,mlange}@sec.t-labs.tu-berlin.de

I. INTRODUCTION

Attacks against smartphones are becoming commonplace

today, especially since they are connected to the Internet at all

times. Current attacks range from worms and botnets [9], to

user installed Trojans [8]. New vulnerabilities in smartphones

emerge fast particularly since today’s smartphones are based

on common software libraries such as the Linux kernel or the

WebKit browser engine. In order to keep up with new attack

trends we believe that it makes sense to adopt the honeypot

scheme for smartphones.

Honeypot: a computer system, built and deployed just for

the goal of being attacked and compromised in order to study

new attacks and to serve as an early warning system.

In the past honeypots and honeynets (a network of

honeypots) [10], [1], [5] have shown to efficiently detect

scanning worms and attacks that exploit vulnerabilities.

In this work, we aim to design and build a smartphone

honeypot. Our honeypot must catch attacks originating from

the Internet, mobile networks as well as through malicious

applications.

We started to develop HoneyDroid, a smartphone honeypot

for the Android [7] operating system. We chose to build

the honeypot using real mobile phone hardware as opposed

to using the QEMU-based Android emulator. We do this to

include access to the mobile network.

The main contributions of our work are:

• First to address smartphone honeypots. We identified

the main challenges of mobile honeypots.

• Benefits of real phone hardware. Using real smartphone

hardware has the benefit of being able to use the modem

to access the mobile operator network. By using

OS virtualization we achieve equal monitoring and

containment capabilities compared to an emulator

approach.

In the rest of this work we first present the main challenges

we identified for building a smartphone honeypot. We briefly

discuss related work before giving an overview of our hon-

eypot design in the main part. In the end we briefly discuss

ideas to solve the visibility issue and shortly conclude.

II. CHALLENGES

While investigating the possibilities we identified four major

challenges.

Monitoring: One major feature of a honeypot is to monitor

its activities. The question arises how to monitor system events

when taking into account that the monitored operating system

kernel might get compromised itself. We aim at a system that

can monitor all events needed to recreate the exact execution

leading to an successful attack (Completeness Criterion).

Audit Logging: The audit logs created by monitoring are

vital for the reconstruction of an attack. Consequently they

need to be stored in a way that their integrity is ensured

(Integrity Criterion). This property is especially difficult to

achieve if we consider the operating system kernel to be

vulnerable as well.

Containment: Honeypots are made to be compromised. But

the compromised honeypot must not provide the attacker with

a platform for launching further attacks. We specifically want

to avoid premium-number-malware to abuse the honeypot.

Therefore, one has to implement a containment mechanism

in addition to the monitoring and logging.

Visibility: The honeypot needs to be exposed in a way that

makes it attractive for attackers. The minimal goal is that the

attacker is somehow able to reach the honeypot. Smartphones

rarely run network services, therefore, other means have to be

developed to increase the visibility of the honeypot system.

III. RELATED WORK

ReVirt [6] facilitates intrusion detection by running the

target operating system in a virtual machine, and logging

all asynchronous events. ReVirt is able to replay the virtual

machine execution, as thereby helps in understanding an

attack. ReVirt takes attacks on the guest kernel into account,

and does all monitoring and logging in the virtual machine

monitor.

IV. SYSTEM DESIGN

We designed HoneyDroid to run on real smartphone hard-

ware with all mobile communication features such as packet-

data (GPRS), voice calls, and SMS/MMS messaging enabled.

Having access to the mobile phone network will increase the

visibility of our honeypot.

Our system shown in Figure 1 is based on a micro kernel. A

micro kernel provides strong isolation guarantees for its appli-

cations. The ability to run monolithic kernels as applications,



Flash Disk ModemCPU, Memory

Microkernel

Virtual

Disk Driver
Virtual

Modem Driver

L4Android

Android Userland
(not modified)

Event

Monitor

Log

Component

Virtual ModemVirtual Harddisk

Disk

Driver

Modem

Driver

Snapshot

Component

Filter

Component

Fig. 1. The HoneyDroid architecture.

enables us to run the complete Android stack side-by-side with

secure components on one device.

Our event monitor interposes between the Android kernel

and its applications to monitor events such as system calls

and signals. In HoneyDroid, Android is not allowed to access

hardware directly. Instead we virtualize all relevant devices

e.g. modem, wifi, and mass storage. This puts us in control

of all of Android’s hardware interaction, which can then be

monitored. Further, it allows us to take snapshots of the file

system and store them in a place not accessible to Android.

Our virtual modem implements filters that mitigate any at-

tempts of malware committing fraud and thus implements the

containment functionality.

The log software is a separate component running directly

on the micro kernel. It receives log information from different

components in the system. Log messages are tagged with a

time stamp to maintain their correct order. All logging is

transparent to Android. This ensures that logging cannot be

disabled or bypassed by an attacker. To ensure their integrity

log files are inaccessible from Android.

With our event monitor and the virtual devices we can

collect enough information to replay Android’s execution to

gain a better understanding of the attack.

This setup is similar to ReVirt [6]. In difference to ReVirt

which is based on a monolithic kernel, we build on a micro

kernel, which reduces the trusted computing base of the

honeypot by orders of magnitude.

A. Visibility

Visibility is a major issue. Implementing the best monitoring

does not buy anything if the honeypot is not attacked. To

increase the visibility we plan to:

• Have a public IP address for the honeypot.

• Automate installation and execution of applications.

• Automate loading of mobile websites.

• Spread name of Google account linked with the honeypot.

B. Drawbacks of Chosen Approach

The most significant drawback is that HoneyDroid does not

behave exactly the same way the original Android system does,

as some virtualization overhead has to be taken into account.

This might be detected by malware, which could then stop its

attack and thus escape our honeypot.

We are aware that our virtualization software presents a

new attack vector. The micro kernel is of low complexity,

which leaves little room for serious kernel flaws. Thus, we

are confident that its isolation boundaries hold, and an attack

remains confined.

V. PROTOTYPE IMPLEMENTATION

For this project we chose Fiasco.OC [4], a modern third

generation micro kernel, as the basis of our architecture. It

features an object capability mechanism to implement access

control. Object capabilities facilitate the creation of systems

implementing the principle of least authority.

We leverage L4Android [2] (L4Android is based on

L4Linux [3]), a system that runs the Android kernel as an

application on top of Fiasco.OC. L4Android remains binary

compatible with the Android kernel and therefore runs the

Android software stack without modification. L4Android al-

lows us to run multiple instances of Android in parallel on

one device. It supports different versions of the Android stack

such as Froyo and Gingerbread.

VI. CONCLUSIONS

With HoneyDroid we are going to show that a mobile

honeypot is feasible. We employ virtualization to create system

logs that are complete enough to replay an attack. With our

architecture, we are the first to create a honeypot on a mobile

device.

REFERENCES

[1] The Honeynet Project. http://www.honeynet.org/.
[2] L4Android: Android on top of L4. http://www.l4android.org, February

2011.
[3] L4Linux - Running Linux on top of L4. http://os.inf.tu-dresden.de/L4/

LinuxOnL4/, January 2011.
[4] The Fiasco microkernel. http://os.inf.tu-dresden.de/fiasco/, January

2011.
[5] D. Dagon, X. Qin, G. Gu, W. Lee, J. Grizzard, J. Levine, and H. Owen.

Honeystat: Local worm detection using honepots. In in Proceedings

of the 7 th International Symposium on Recent Advances in Intrusion

Detection (RAID, pages 39–58, 2004.
[6] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M. Chen.

Revirt: enabling intrusion analysis through virtual-machine logging and
replay. SIGOPS Oper. Syst. Rev., 36:211–224, December 2002.

[7] Google Inc. Android. http://www.android.com/.
[8] Lookout Inc. DroidDream Malware Found in Official Android Mar-

ket. http://blog.mylookout.com/2011/03/security-alert-malware-found-i
n-official-android-market-droiddream/, March 2011.

[9] P.A. Porras, H. Saidi, V. Yegneswaran. An Analysis of the iKee.B
iPhone Botnet. In Proceedings of the 2nd International ICST Conference

on Security and Privacy on Mobile Information and Communications

Systems (Mobisec), May 2010.
[10] N. Provos. A virtual honeypot framework. In Proceedings of the 13th

conference on USENIX Security Symposium - Volume 13, SSYM’04,
pages 1–1, Berkeley, CA, USA, 2004. USENIX Association.


