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Abstract. Wireless devices that integrate the functionality of PDAs
and cell phones are becoming commonplace, making different types of
network services available to mobile applications. However, the integra-
tion of different services allows an attacker to cross service boundaries.
For example, an attack carried out through the wireless network inter-
face may eventually provide access to the phone functionality. This type
of attacks can cause considerable damage because some of the services
(e.g., the GSM-based services) charge the user based on the traffic or
time of use. In this paper, we demonstrate the feasibility of these attacks
by developing a proof-of-concept exploit that crosses service boundaries.
To address these security issues, we developed a solution based on re-
source labeling. We modified the kernel of an integrated wireless device
so that processes and files are marked in a way that allows one to regu-
late the access to different system resources. Labels are set when certain
network services are accessed. The labeling is then transferred between
processes and system resources as a result of either access or execution.
We also defined a language for creating labeling rules, and demonstrated
how the system can be used to prevent attacks that attempt to cross
service boundaries. Experimental evaluation shows that the implemen-
tation introduces little overhead. Our security solution is orthogonal to
other protection schemes and provides a critical defense for the growing
problem of cell phone viruses and worms.

1 Introduction

Mobile devices such as Personal Digital Assistants (PDAs) and cell phones are
converging. The new devices created through this convergence integrate differ-
ent wireless technologies such as IEEE 802.11, Bluetooth, and GSM/GPRS.
Unfortunately, the integration of different network services is often performed
by simply including the necessary hardware and software components in a single
device, without considering the different characteristics of each technology and
the services bound to them. As a result, highly-integrated devices may be vul-
nerable to a novel class of attacks that leverage the interaction between different
services.
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A particularly notable example is the interaction between free services and
subscription-based services. Cell phones are bound to carriers through a service
agreement where the user is billed by the time spent using the service and/or
by the amount of data transferred. PDAs, on the other hand, usually support
(free) access to both wireless and wired IP-based local area networks (LANs).
Although cell phone service providers implement firewalls and other forms of
protection to safeguard the security of users’ devices, little protection is provided
when accessing wireless or wired LANs. Therefore, an integrated device may be
compromised by exploiting the local area network connectivity and leveraged to
access subscription-based services, causing monetary loss to the user.

This situation is worsened by the improved storage and computational power
provided by integrated devices. The availability of relatively high-performance
PDA platforms support the execution of third-party, network-accessible services
(e.g., personal databases and network file servers), which increase the security
exposure of the device. In addition, these network-based applications are often
developed without much concern about security and without considering the
possible interaction between different network services.

To demonstrate the feasibility of sophisticated attacks against devices that
integrate cell phone and PDA functionality, we developed a proof-of-concept
attack, where a buffer overflow vulnerability in a network-accessible service is
exploited through the 802.11b wireless interface. The malicious payload executed
as a result of the attack is then able to access the cell phone functionality and
place (possibly expensive) phone calls on behalf of the attacker. Even though
buffer overflow attacks are not a new concept, to the best of our knowledge, this
is the first detailed description of what a cross-service attack entails, including
some non-trivial aspects of the exploitation.

The current security mechanisms deployed in integrated mobile devices do not
provide any protection against this type of attacks. To address the security issues
associated with integrated devices that can access multiple network services, we
devised a novel mechanism to compartmentalize the access to system resources.
The overall goal of our mechanism is to prevent processes that interacted with
a particular network service (e.g., the wireless IP-based network) from crossing
the service boundaries and access the resources associated with different services
(e.g., the GSM-based services).

Our mechanism monitors the system calls executed by running processes and
labels executing code based on its access to the network interfaces (e.g., wire-
less, GSM, Bluetooth). The labeling is then transferred between processes and
system resources as a consequence of either access or execution. When sensitive
operations are performed, the labels of the involved resources (processes and/or
files) are compared to a set of rules. The rules allow one to specify fine-grained
access control to services and data. For example, it is possible to restrict the
access of an address book application to the phone dialing API, and, in addi-
tion, prohibit access to unrelated APIs (e.g., the socket API). The labeling of
processes and resources, as well as the enforcement of the policies, are performed
by a kernel-level reference monitor.
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To make our mechanism general and easily configurable, we defined a policy
language that allows one to express what actions are allowed by specific classes
of programs with respect to specific classes of resources.

To demonstrate the usability of our mechanism, we implemented a prototype
of the labeling system and the associated reference monitor on the Familiar
Linux [11] platform. We also experimentally evaluated the overhead introduced
by the mechanism.

The rest of this paper is structured as follows. Section 2 describes our proof-
of-concept attack against devices that integrate PDA and cell phone functional-
ity. Section 3 illustrates the design of our labeling mechanism. Then, Section 4
describes the details of our prototype implementation. Section 5 presents the
experimental evaluation of our security mechanism in terms of both its effec-
tiveness in preventing cross-service attacks and the overhead introduced. Then,
Section 6 discusses related work and Section 7 briefly concludes.

2 A Proof-of-Concept Cross-Service Attack

We implemented a proof-of-concept attack that shows how it is possible to first
break into a cell phone/PDA integrated device by means of its wireless LAN
interface and then access the device’s phone interface to dial a number. The
attack was performed against a Pocket PC-based integrated device [22]. The
proof-of-concept attack has been developed against two targets. The first is an
application we developed to easily demonstrate the attack; the second is a 0-day
attack against a real-world application. Note that this attack has not been made
public yet.

2.1 An Attack Scenario

The proof-of-concept attack is an “over-charging” attack against the
subscription-based service of a user, where the victim’s cell phone is leveraged
to place expensive phone calls (e.g., to a pay-per-minute 900 number). Other
attacks are possible, but the fact that over-charging attacks may generate a
revenue for the attacker (and a loss for the victim) suggests that they have the
potential of becoming widespread soon.

To illustrate an instance of the attack, one can imagine a traveling salesman
who walks into a coffee shop seeking wireless Internet access in order to check
his corporate email and online calendar. The salesman starts his integrated cell
phone/PDA and associates the wireless LAN interface on his device with the
coffee shop’s wireless access point.

The attacker is monitoring the coffee shop’s wireless network and sees the
new device associating with the access point. Therefore, he immediately scans
the new device and discovers a well-known vulnerable service. Using an exploit
previously published on a security mailing list for the identified service, the
attacker gains access to the phone. The exploit payload contains code that dials
a 900 number owned by the attacker, charging hundreds of dollars to the victim’s
account.
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2.2 The i-mate PDA2k Phone

To demonstrate the above scenario, we use the i-mate PDA2k [17], an OEM
version of the HTC Blue Angel [16], a so-called “smart phone” running the
Windows Mobile 2003 Second Edition operating system. The device is based
on an Intel XScale PXA263 processor, which is an ARM CPU. The device is
equipped with a wireless LAN (802.11b) interface, a Bluetooth [4] interface,
and multi-band GSM [14] and GPRS [13] services. We chose this device for our
proof-of-concept attack because it represents the type of device that will become
common in a few years. A picture of the device appears in Figure 1.

Fig. 1. The i-mate PDA2k

2.3 A Vulnerable Service

Buffer overflow vulnerabilities account for the vast majority of security exposures
across all platforms. Therefore, we chose this type of attack for our example.

We started off with our own vulnerable application, a simple echo server
(similar to the echo service on UN*X systems). The application accepts incoming
connections and then echoes back the received data. The server fails to check
the length of the received data when copying strings, and, therefore a buffer on
the stack can be overflown with data that eventually hijacks the server’s control
flow.

To determine the likelihood of finding similar vulnerabilities against Win-
dowsCE applications, we analyzed a number of applications, both in binary and
source form. In particular, we focused on applications that listen for incoming



Using Labeling to Prevent Cross-Service Attacks Against Smart Phones 95

connections. For example, some Session Initiation Protocol (SIP) tools [24] listen
for incoming Internet phone calls on port 1720 [30]. Likewise, multiple HTTP [23]
and FTP servers [33, 8] are available for WindowsCE. Several of these applica-
tions obviously don’t perform correct length checks on external input and crashed
when stimulated with specially-crafted input data.

We chose ftpsvr [8], an open-source FTP server, as our target. We found
that the server contains a buffer overflow vulnerability that can be exploited to
achieve a cross-service attack. We provide more details about the vulnerability
and the exploit in the next paragraph.

2.4 Exploiting the Vulnerability

The vulnerability we used for the attack is a simple strcpy attack in the func-
tion void Session::SendToClient(int mode, LPCSTR msg) in ftpmain.cpp.
The function is called to respond to client commands, which, in some cases,
echoes back data provided by the client. The attack utilizes the USER com-
mand and the error handler for unknown commands. Both operations utilize
SendToClient, passing unchecked client input to it. The strcpy invocation in-
side SendToClient writes to a fixed-size buffer of 256 bytes, which allows one to
overwrite the return address of the function’s stack frame. Because of random
memory corruption of old stack frames on function exit, we had to first upload
the shellcode into a safe place. For this we utilized the unknown command error
handler. The handler stores the string that doesn’t match any command in the
global variable m szSjis just before sending an error to the client. Modification
of the program counter is done by utilizing the USER command, which overwrites
the return address with the address of m szSjis.1

Using just the address of the shellcode as return address is not enough on
WindowsCE. This is because the WindowsCE memory architecture [21] has
only one virtual address space for the kernel, dynamic libraries and processes,
with a maximum of 32 processes executing concurrently. Therefore, each process
is placed in one of the pre-determined “slots” (pseudo-virtual address spaces).
The slot number is determined by the most significant byte of an address. A
particular case is represented by the current active process, which is mapped to
slot 0 in addition to its actual slot. Note that in this case the most significant-
byte is 0, and since the exploit needs to be zero-free in order to be processed by
string functions, the actual slot must be found in order to successfully exploit
the vulnerability.

Finding the right slot is not infeasible. First, the total number of slots is
small (32); second, slots are assigned in order (bottom up); and third, system
processes use fixed slots which further cuts down the search space. In addition,
if a vulnerability in a system process is found, no search is required to exploit
it, because the process uses a fixed slot.

Note that, using a wrong address will usually just lockup the target device,
forcing the user to reset/reboot. After restart, the guessing becomes much easier

1 For a general overview of how buffer overflows work, see [18].
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since the target application will likely be placed in one of the lower memory
slots.

Writing a malicious payload (i.e., the “shellcode”) for WindowsCE is straight-
forward. The only complication comes from the requirement that only library
calls can be used instead of system calls. Thus, one must additionally find the
address of where in memory the desired library calls are mapped. This map-
ping information is device- and version-specific and can be gathered off-line. As
a result, the attacker only needs to discover the device type to determine the
correct address. This problem can be partially solved using the WindowsCE API
Address Search Technology [27], which does the function address lookup on-
the-fly, and, therefore, can produce portable shellcode. However, this technique
introduces a substantial amount of overhead (in terms of shellcode size).

In most cases, using library calls in WindowsCE shellcode is straightforward,
once the address of the target call is known. A call is done in four steps: first,
the function address needs to be loaded into a register; second, the function
parameters also need to be loaded into registers (for more than four parameters
the stack is used to pass the additional parameters); third, the return address has
to be saved to the link register (LR); in the fourth step, the call is executed
by direct modification of the program counter, setting it to the address of the
function.

Additional care needs to be taken to remove any zeros from the shellcode.
This is a general problem when dealing with string functions. In addition, both
the ARM architecture and WindowsCE add additional sources for zeros. ARM
instructions have fixed length (4 bytes), and, therefore, some instructions will
contain zero bytes (e.g., every time register r0 is used). As another example,
WindowsCE uses mostly Unicode strings, which will add multiple zero bytes for
each string. To remedy this problem we used a simple XOR encryption to remove
zeros. Our shellcode contains a small bootstrap routine which decrypts the main
payload, as it is often done with polymorphic malware.

Once the payload of the attack is executed, the code places a phone call. This
is done in two steps. In the first step, the phone library is loaded (mapped)
into the application’s address space. This is done by calling LoadLibraryW(TEXT
("cellcore")). In the second step, the phone call is executed by calling tapi-
RequestMakeCall, which dials the given number. The number is a Unicode string
passed as the first parameter to tapiRequestMakeCall.

In summary, we were able to craft an exploit for the WindowsCE platform that
overflows a buffer in a network-based application, and then forces the victim’s
device to place a phone call. Recent postings [6, 1, 2] to security lists like [29]
underline our assumptions that exploits for WindowsCE will soon be publicly
available, and, therefore, could be used as a vector for this type of attack.

3 Preventing Cross-Service Attacks Through Labeling

The exploit described in the previous section demonstrates how an attack can
cross service boundaries and abuse the resources of an integrated cell phone/PDA
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device. Traditional solutions, such as stack protection mechanisms [5], require
compiler support and are not yet widely available for WindowsCE devices. Even
though version 5.0 of the Microsoft WindowsCE build environment has an option
to protect against stack-smashing attacks (i.e., the /GS option [20]), this feature
is not enabled by default. Also, cross-service attacks can be carried out without
performing buffer overflows (e.g., by exploiting application-logic errors), and,
therefore, a solution directly targeted to prevent these attacks is needed.

To counter cross-service attacks, we developed a security mechanism based
on process and system resource labeling. The mechanism defines three types
of objects, namely processes p1, p2, ..., pn ∈ P , resources r1, r2, . . . , rm ∈ R,
and interfaces i1, i2, . . . , ik ∈ I. Processes and resources have an associated set
of labels l1, l2, . . . , lj ∈ L. Each label represents the fact that, either directly
or indirectly, the process or resource was in contact with a specific network
interface. We define L(i) the label associated with interface i. In addition, we
represent with LS(p) and LS(r) the set of labels associated with a process p and
a resource r, respectively.

Our security mechanism includes a monitoring component that intercepts
the security-relevant system calls performed by processes. These are the system
calls that access interfaces, access/execute resources, create resources, and create
new processes. When a security-relevant system call is intercepted, the labels of
the executing process are examined with respect to a global policy file that
specifies which types of actions are permitted, given the labels associated with
a process. The result of the analysis may be that the access is denied, that the
access is granted, or that the access is granted and, in addition, the labels of
the resource/process involved in the operation are modified. In the following, we
present in more detail the operations performed by the labeling mechanisms in
relation to the execution of certain types of system calls.

Interface access. When a process accesses an interface, the process’ labels are
examined to determine if access should be granted. If this is the case, the process
gets marked with a label representing the specific interface being accessed, that
is, LS(p) = LS(p)∪L(i), where p is the process accessing interface i. For example,
if a process accessed the wireless LAN interface by performing a socket-related
system call, then the process is marked with a label that specifies the wireless
LAN interface.

Resource access. When a process requests access to a resource (for example,
when trying to open a file) the labels associated with both the process and the
resource are examined with respect to the existing policy. If access is granted,
then the label set of the process is updated with the label of the resource, that
is, LS(p) = LS(p) ∪ LS(r), where p and r are the process and the resource
involved, respectively.

Resource and process creation. When a process p creates a new resource or
modifies an existing one, say r, the resource inherits the label set of the process,
that is LS(r) = LS(p). In a similar way, when a process p creates a new process
p′ the labels are copied to the newly created process, that is, LS(p′) = LS(p).
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The labeling behavior described above allows the security mechanism to keep
track of which interfaces were involved and of which processes and resources
were affected by security-relevant actions. For example, if a process bound to
a certain interface was compromised, the files (or the processes) created by the
compromised process will be marked with the label associated with the inter-
face. When the compromised process (or a process that is either created by the
compromised process or that accesses or executes a resource created by the com-
promised process) attempts to access other interfaces, it is possible to identify
and block the attempt to cross a service boundary.

3.1 Policy Specification

The security mechanism uses a policy file to determine whether to grant or deny
a process access to a resource or interface. In addition, the policy file can be
used to modify the default labeling behavior described above.

Access control is performed by specifying which label or labels a process is not
allowed to have when accessing a specific resource or interface. By default, access
is granted to all interfaces and resources. Of course, this default policy is not
very secure, but we anticipate that service providers will create comprehensive
rules for their users, or that power users will adopt more restrictive rules, as
needed.

The policy file consists of a set of rules, where a rule is composed of the target
interface or resource, the action to be performed by the reference monitor when
access is requested, and the labels that trigger the action. The access control
language is defined as follows:

policy ⇒ rule∗

rule ⇒ access (interface|resource) action label∗

action ⇒ deny|ask

The deny action simply denies access, while the ask action prompts the user for
confirmation through an interactive dialog box. For example a rule like:

access i1 deny i2 i3

would deny access to interface i1 if the process was previously labeled with the
labels associated with interfaces i2 or i3.

As stated before, the policy file can also be used to modify the default la-
beling behavior. By default, every process becomes labeled when it accesses an
interface (or another labeled resource) or when it is created by a marked process.
The policy language can be used to define which applications are excluded from
this behavior. We define three actions that modify marking in a certain way. The
notlabel action denotes that the process executing the specified application is
not labeled when touching an interface. The notinherit action denotes that the
process does not inherit any labels when accessing objects. The notpass action
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denotes that the process is not passing labels to resources and processes. These
extensions to the policy language are defined as follows:

rule ⇒ exception path action∗

path ⇒ / (dirname/) ∗ filename

action ⇒ notlabel|notinherit|notpass

The path variable specifies the file containing the application whose behavior
has to be modified.

Consider, as an example, a rule for a trustworthy synchronization applica-
tion that is used to transfer and install files to a device using the USB cable
interface. The synchronization application needs access to the USB interface to
operate correctly, and, at the same time, it is not desirable that all the files
created by the application are labeled with the interface used for synchroniza-
tion. Therefore, a set of exception rules for the synchronization application can
be used to specify that the process is not marked with any label and does not
inherit or pass labels to and from resources. In this case, the user can trust the
synchronization application because it can operate only using the USB interface
which requires physical access to the device. This is a somewhat over-simplifying
example. Some synchronization operations may be performed through other in-
terfaces such as Bluetooth or the Internet. In such cases, the policy should be
modified accordingly. (In addition, a very security conscious user may even turn
off Internet synchronization, and use Bluetooth judiciously.)

As another example, consider a rule for a Web browser which specifies that
the process does not inherit labels from files. This is necessary, since the browser
must access previously downloaded files (e.g., the browser cache). This pre-
vents the browser from becoming labeled and possibly unable to access the
network.

The notpass action can be used to specify which applications can create non-
marked files. This mechanism can be used to implicitly remove labels from a file
by making a copy of it using an application which has the notpass action set. An
example is the FileExplorer application. A sample marking policy for PocketPC
could look like the one showed in Figure 2, while a sample marking policy for a
Familiar Linux installation may be similar to the one shown in Figure 3.

# Internet Explorer
exception /Windows/iexplore.exe notinherit

# ActiveSync
exception /Windows/repllog.exe notlabel notinherit notpass

# FileExplorer
exception /Windows/fexplorer.exe notpass

Fig. 2. Sample policy file for PocketPC
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# Konqueror (web browser)
exception /opt/bin/konqueror notinherit

# Ipkg (package management tool)
exception /usr/bin/ipkg-cl notlabel notinherit notpass

# multi-purpose binary
exception /opt/QtPalmtop/bin/quicklauncher notpass notinherit

Fig. 3. Sample policy file for Familiar Linux

4 Implementation

Even though our proof-of-concept attack was against the WindowsCE OS, we im-
plemented a prototype of our labeling system for the Familiar Linux distribution,
because we needed to be able to modify the kernel of the operating system. We
used the Familiar release 0.8.2 as our base system, and we modified the kernel
and added a few utilities. The kernel version used was 2.4.19-rmk6-pxa1-hh37.
Like many other host-based monitoring approaches, our monitor runs in the op-
erating system kernel, and it is safe from tampering unless the root account is
compromised.

Our prototype monitors access to files and communication interfaces, such
as the wireless LAN interface or the phone interface. Monitoring and enforc-
ing the object marking is implemented by intercepting the system calls used to
access the objects of interest and carrying out the actions specified by the pol-
icy rules. Program execution is handled through monitoring of the execve(2)
system call. Network related access is monitored through the socket(2) family
of system calls. File system monitoring, including device files (e.g., serial line
device), is done by intercepting the open(2) system call. We also added to the
kernel additional system calls for loading labeling and exception polices into
kernel space.

Processes are marked with a label by the monitor upon accessing either a
monitored interface or a file in the filesystem. The labels are implemented as
bits in a bit-field, shown in Figure 4, which is stored in the process descriptor
structure of the operating system kernel. Each label in the bit-field represents a
specific communication interface. When a process attempts to access a system
resource, the relevant labels are checked against a kernel-resident data structure
containing the policy.

Files created or touched by a marked process inherit the process’ labels (as
explained in Section 3, this “tainting” process also works in the other direction).
File marking is implemented by adding the same bit-field used for process labels
to the file structure in the filesystem. This is done by maintaining file-specific
data structures in the operating system kernel.

Labels are used to specify the interfaces in a device that provide some kind
of communication with the outside world. In our implementation, labels are
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divided into three subsets. This classification provides a more general way to
define access policies.

Wired. This set of labels contains all interfaces which need some kind of physi-
cal connection in order to communicate. Example devices include: the serial
interfaces, USB interfaces, and Ethernet interfaces.

WirelessNonfree. This set of labels contains all wireless interfaces bound
to a subscription-based service. Examples are: GPRS, GSM voice, and
GSM data.

WirelessFree. This set of labels contains interfaces that are not bound to
a subscription-based service. Examples include Infrared, Bluetooth voice,
Bluetooth data, and Wi-Fi.

wired
0 serial
1 USB
2 Ethernet
3
4

wireless non-free
5 GSM voice
6 GSM data
7 GPRS
8
9

wireless free
10 Wi-Fi
11 Bluetooth voice
12 Bluetooth data
13 Infrared

Fig. 4. Label bit-field

Given the set of labels defined in Figure 4, the policy language of our prototype
can be further defined as follows:

interface ⇒ wireless nonfree|wireless free|wired

wireless nonfree ⇒ gsm voice|gsm data|gprs

wireless free ⇒ infrared|wifi|bluetooth voice|bluetooth data

wired ⇒ serial|usb|ethernet

label ⇒ wired|wireless nonfree|wireless free

The rule language is expressive and powerful enough to stop many types of
cross-service attacks. For example, a rule preventing the proof-of-concept attack
described in Section 1 would look like:

access wireless_nonfree deny wireless_free
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This rule denies access to all non-free wireless interfaces to processes which
have touched any of the free wireless interfaces. It would still permit processes
compromised through free interfaces to access other free interfaces. However, this
simple one-line rule would permit flexible use of a device, with the assurance that
an attack would not result in additional service billing or cost charges. If a more
restrictive rule is required, the policy language permits users and/or service
providers to further lock down the system.

Note that although it cannot stop all types of attacks, the labeling system
addresses operations at a semantic and functional level. This way, new attacks
can be remedied quickly by modifying the set of policy rules. Other orthogonal
solutions, such as stack protection or traditional IDSs, can also be used, but, as
noted above, these solutions are either expensive for handhelds, or are not yet
widely available. Therefore, our labeling solution provides an effective defense
for integrated cell phone/PDA devices.

5 Evaluation

The device used to evaluate our system is an HP iPAQ h5500 [15] which is
ARM-based, like the i-mate device, and runs Familiar Linux.

To test our solution, we first implemented the same proof-of-concept vulnera-
ble echo server for the Linux OS. We then developed an exploit in a way similar
to the one described in Section 2.4.

The access control policy used in the evaluation is the same as discussed in
Section 4. The policy simply denies access to all non free wireless interfaces for
processes that touched any free wireless interface.

5.1 Preventing the Attack

We will discuss the execution steps of the exploit to demonstrate how the labeling
system prevents the attack. The echo server process is labeled upon creation of
a socket (that is, when the process invokes socket(AF INET, ...)). Since one
cannot easily determine which interface will be used for IP networking, as a
result of the socket operation both the label bits associated with Wi-Fi and
Ethernet are set, covering both the free wireless and the wired class.

When the exploit code tries to access the port associated with the GSM
interface using an open(2) system call, the reference monitor is invoked. The
reference monitor then compares the process’ bit-field with the rules specified in
the policy file. The monitor denies access to the device, and the call to open(2)
fails, returning EACCESS. Note that the buffer overflow may still take place, and
the vulnerable application may likely crash. However, the over-charging attack
cannot be performed.

As noted above, stack integrity protections and other orthogonal solutions
can help prevent the buffer overflow in the first place. However, there are other
types of vulnerabilities, e.g., application logic errors, to which these techniques
are not applicable. Our policy labeling solution is general, simple, and efficient.
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It gives assurances that attacks have limited impact, and will not result in the
crossing of network services, which might cause billing charges.

5.2 Preventing Exploitation of Legal Privileges

Exploiting legal privileges of applications is a common method for circumventing
access control mechanisms. In our system, this exploitation is prevented through
the label inheritance on process creation. A newly created process will always
inherit all labels from its creator, and, therefore, an attacker cannot use a new
process to get rid of the labels and abuse his/her privileges.

If an application with legal access to a critical interface has the notinherit
exception set, the protection is circumvented. Therefore, caution has to be taken
when creating exception rules.

5.3 Accessing Multiple Interfaces Legally

The special case where an application needs to access multiple interfaces of
different classes (specified in Section 4) could be problematic for our system.

An example for this kind of situation is a phone application which needs
to access the GSM interface and Bluetooth in order to use a wireless headset
for hands-free speaking. Another example would be roaming in next-generation
telephony networks, where a phone application may need to access both the
wireless LAN and the GSM interfaces.

These kind of situations can be handled through the use of a notlabel ex-
ception rule for specific applications. The rule will prohibit the labeling of the
applications’ processes when accessing any of the interfaces, and, therefore, these
applications will be able to access all classes of interfaces. Note that processes
will still inherit labels from accessed resources and from the parent process.

In summary, our system cannot detect attacks against applications that cross
service boundaries by design. This is because the applications normal behavior
matches the semantics of a service-crossing attack. We acknowledge this as an
obvious shortcoming of our system. However, we believe that our mechanism
still provides effective protection in most cases.

5.4 Overhead

One of our design goals was the creation of an efficient security solution, to en-
courage wide adoption. To evaluate the efficiency of our mechanism we measured
the overhead introduced by the labeling system in two areas: the actual labeling
and the access control enforcement.

Labeling Overhead. Executing a new application involves three steps: first,
checking the marking policy for any special rules that might apply to the
application being executed by the process; second, updating the process’
bit-field (in particular clearing all labels if the marking policy specifies not-
inherit); third, checking the bit-field of the application’s binary file itself
(which is skipped if the marking policy specifies notinherit).
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Further overhead is added through calls to open(2). In this case, labels
are inherited by the process and/or are passed to the file, depending on the
process’ exception rules and the open mode of the file. Calls to the socket(2)
system call only add very little overhead, since only the exception rules need
to be checked before the process is labeled.

For example, when the wget application is executed, the monitor is trig-
gered by the execve(2) system call, which then performs the initial steps.
Later, the monitor is triggered again, because of network and filesystem
access (i.e., calls to socket(2) and open(2), respectively).

Enforcement Overhead. The labeling system has a second potential impact
on performance during enforcement. When enforcing a rule, the monitor has
to compare the label bit-field of the process and the involved resource with
the labels specified for each rule in the global policy. The monitor stops the
analysis as soon as a matching deny rule is found.

For example, when the ftp application calls socket(2), the monitor is
triggered and searches the global policy for a rule matching the process’
labels to decide if network access is to be granted, and, therefore, the socket
can be created.

To measure the overhead introduced by our labeling system we chose three
classes of tests: first, file access only; second, light network usage; third, heavy
network usage. We used the time command to measure the time spent in the ker-
nel during system calls. All tests were conducted using both the original kernel
that came with Familiar and our own modified kernel.

To measure the overhead added to applications with only file access we ran
grep on a directory containing 61 files and directories. In this test, 435 system
calls were made with 1 call to execve(2) and 63 to open(2). Intercepting the
open(2) system call introduced some overhead. In the case of the grep test the
overhead was 19%.

Measuring the overhead for applications with light network usage was done
using wget to retrieve a file from a web server. Also, files are created (written
to), and, therefore, labels are inherited from the wget process. In this test, 118
system calls were made with 1 call to execve(2), 20 calls to open(2) and 1 call
to socket(2). Since wget only performs a few system calls which are intercepted,
the introduced overhead of 26% mostly originates from the checks done within
execve(2).

For measuring the overhead for a heavy-weight network application we used
ncftpget to download an entire directory (20 files) from a ftp server. In this
test, 2220 system calls were made with 1 call to execve(2), 54 calls to open(2)
and 28 calls to socket(2). Note that this test shows an overhead of only 10%.
This is due to the fact that the startup penalty, introduced by the interception
of execve(2), is distributed over a longer execution time.

The results for all tests are shown in Figure 5. Note that the implementation
of this prototype system is far from optimal. In particular, the implementation of
the open(2)monitor has some performance issues. Overall, we are confident that



Using Labeling to Prevent Cross-Service Attacks Against Smart Phones 105

 0

 0.05

 0.1

 0.15

 0.2

 0.25

m
od

if
ie

d

or
ig

in
al

m
od

if
ie

d

or
ig

in
al

m
od

if
ie

d

or
ig

in
al

av
g.

 C
PU

-s
ec

on
ds

 in
 k

er
ne

l

 

grep wget ftp

Fig. 5. Overhead evaluation

the overhead introduced by our system is small enough to provide a light-weight
solution against cross-service attacks.

6 Related Work

Labeling processes to perform network access control is not novel, and similar
techniques are often found in information assurance systems. For a compre-
hensive overview of information-flow security, see [26]. Our work is different
from classic solutions of information-flow security, because our system tracks
executable code instead of data. This prevents cross-interface exploitation and
provides data protection.

Our work also fits into the larger field of access control [28]. Our work is similar
to [9], where the authors created Deeds, a history-based access control system for
mobile code. Deeds works with browser-based mobile code, and tracks dynamic
resource requests to further differentiate between trusted and untrusted code.
Our system is different in that the access policies are static, and not limited
to just browser-based programs. Our use of static rules is appropriate to the
handheld environment, where there are fewer applications than on a desktop.

Other labeling systems have been proposed. But since they were designed for
desktop or server systems, they are too feature-heavy and introduce substantial
administrative and performance overhead. Typical examples include hardened
operating systems such as [19] and [34].

Our system shares similarities with LOMAC [12] which implements a form
of low watermark integrity [3]. The difference is that our system distinguishes
between different types of network interfaces. In the current implementation,
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we mainly focus on the cost factor of different interfaces. Other factors like
trustworthiness could be used instead.

Other security systems specifically target mobile devices, such as Umbrella
[25]. Umbrella is a protection system based on signed binaries and mandatory
access control mechanisms. It also heavily relies on the developers to write secure
code. By contrast, our system presumes that some vulnerabilities will exist, and
seeks to contain the impact of the attack on existing resources.

In the past year, viruses and worms targeting cell phones have started to ap-
pear in the wild [31]. Most of these viruses are either harmless proof-of-concepts,
or need user interaction in order to infect a target. Some recent cell phone viruses,
however, are malicious and destroy or degrade system resources [32, 10]. We be-
lieve that viruses targeting cell phones will soon become a major problem for
consumers [7]. The interface labeling system we describe can help preventing not
only directed break-in attacks but also the spread of worms and viruses targeting
cell phones.

7 Conclusions

Much research needs to be carried out in the field of mobile device security. Our
paper is the first in this area to demonstrate a cross-service vulnerability, and to
propose a solution. Many of the problems found on desktop systems are starting
to appear on handhelds. However, architectural differences between handhelds
and desktops (e.g., less memory) present challenges for security designers.

We have designed and implemented an efficient labeling system to help mit-
igate or prevent cross-service attacks. Our prototype labeling system can be
extended to effectively protect mobile devices against various threats. Future
work will concentrate on extending the policy language to allow a user to de-
scribe more complex labeling policies and on making the implementation of the
reference monitor more efficient.
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