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Introductions

● Collin Mulliner ● Jon Oberheide
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#Cats4Fun
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Thanks, Mudge!
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Android
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Android

Most popular smartphone platform
about 1 billion devices today
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This dude is in trouble
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Lets patch him up!
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WTF are we doing here people
● Anti-malware

○ 99.9%* of Android malware is bullshit toll fraud
● MDM

○ “Manage” your way out of an insecure platform
○ HEY I CAN SEE ALL MY VULNERABLE DEVICES, 

YAY!
● Other features of mobile “security” products

○ Find my phone (G does it), backup (G does it), …?

* I just made this up, kinda
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How about...
● Maybe we try to fix the underlying issues?

○ “Enumerating badness” always doomed to fail
○ Naw, that’s crazy talk!

● Underlying issues (in our not-so-humble opinion)
○ Lack of platform integrity
○ Privilege escalation vulns, large attack surface
○ Huge windows of vuln due to slow/non-existing 

patching practices
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Our research
● Investigated Android vulns and solutions

○ Vulns in native and managed code
○ More than privesc!

● Let’s show what can be done
○ Mostly PoC, but deployed to 

100k’s of real-world devices
○ If we can do this on the cheap, 

maybe Big Corp can do it for reals
● “Defensive” talk, booooooooo

vs.
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A tale of three projects
● Vulns exist

○ X-Ray

● How to get rid of them
○ PatchDroid

● How to brick a lot of people’s phones ;-)
○ ReKey



Mulliner and Oberheide, CSW 2014 

Ideal mobile ecosystem...HA!

● In a perfect world…

● AOSP: Google ships a secure base platform.

● OEM: Samsung and third-party suppliers don’t 
introduce vulns in their handsets and customizations.

● Carrier: T-Mobile rolls out rapid OTA updates to keep 
users up to date and patched.
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Real-world mobile ecosystem

● In the real world…

● AOSP: Android improving mitigations, but slowly.

● OEM: Customizations by device OEMs are a primary 
source of vulnerabilities.

● Carrier: Updates are not made available for months 
and sometimes even years.
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Real-world mobile ecosystem

● In the real world…

● AOSP: Android improving mitigations, but slowly.

● OEM: Customizations by device OEMs are a primary 
source of vulnerabilities.

● Carrier: Updates are not made available for months 
and sometimes even years.

All software has vulns, mobile or otherwise.

Failing to deliver patches is the real issue. 
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Disclosure & patching process

Researcher

Google OEM Carrier

Third-party
providers

Public Attackers
days

weeks

months months

days

days
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Challenges in patching

● Why is mobile patching challenging?
● Complicated software supply chain 
● Testing, testing, testing
● Risk of bricking devices
● Inverted economic incentives

● Want to patch your device's vulnerabilities?
● Loadset controlled by carrier
● Can't patch the device (unless rooted)
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What the carriers say

"Patches must be integrated and tested for different platforms 
to ensure the best possible user experience. Therefore, 
distribution varies by manufacturer and device." - AT&T
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Privilege escalation vulnerabilities

● Android security model
● Permissions framework, “sandboxing” (Linux uid/gid)
● Compromise of browser (or other app) != full control of device

● Privilege escalation vulnerabilities
● Unprivileged code execution → Privileged code execution
● Publicly released to allow users to jailbreak their devices
● Public exploits reused by mobile malware to root victim's devices

● Ooooh, fancy mobile privesc, right???
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Quick trivia

● What's wrong with the following code?

● Assuming a uid/euid=0 process dropping privileges...

/* Code intended to run with elevated privileges */
do_stuff_as_privileged();

/* Drop privileges to unprivileged user */
setuid(uid);

/* Code intended to run with lower privileges */
do_stuff_as_unprivileged();
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Zimperlich vulnerability
● Return value not checked! setuid(2) can fail:

● Android's zygote does fail if setuid does:

● Fork until limit, when setuid fails, app runs as uid 0!

    EAGAIN The uid does not match the current
           uid and uid brings process over its
           RLIMIT_NPROC resource limit.

        err = setuid(uid);
        if (err < 0) {
            LOGW("cannot setuid(%d): %s", uid, strerror(errno));
        }
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A sampling of privesc vulns

● ASHMEM: Android kernel mods, no mprotect check 
● Exploid: no netlink source check, inherited from udev
● Exynos: third-party device driver, kmem read/write
● Gingerbreak: no netlink source check, GOT overwrite
● Levitator: My_First_Kernel_Module.ko, kmem read/write
● Mempodroid: inherited from upstream Linux kernel
● RageAgainstTheCage: no setuid retval check
● Wunderbar: inherited from upstream Linux kernel
● Zimperlich: no setuid retval check
● ZergRush: UAF in libsysutils
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X-Ray for Android

http://xray.io

● How can we measure this problem?

● X-Ray for Android
● DARPA CFT funded
● Performing _actual_

vuln assessment on mobile
● Detects most common privescs
● Works without any special privileges 

or permissions
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X-Ray
Service

Static probes

● Static probes
● Can identify vulnerabilities using static analysis
● Send up vulnerable component (eg. binary, library) to service
● Disassemble and look for patched/vulnerable code paths

libdvm.so

result
Analyze!
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Static probe example: Zimperlich
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Ok, what does it _really_ look like?
● l33t static analysis...aka ghetto objdump/python/grep

● Do we need to be that smart or perfect? Thankfully, no.
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Dynamic probes (aka psuedo-exploits)

● Dynamic probes
● Not all vulnerabilities are in software components we can access
● Example: kernel vulns, kernel image not accessible by X-Ray
● Probe locally for vulnerability presence!
● Basically sad, neutered, wacky half exploits :-(

halp!

liblevitator_v1.so
Execute!

result

X-Ray
Service
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Dynamic probe example: Levitator
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Dynamic probe example: Exploid
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Probe manifests in JSON
{ 

"id":             "webkit",
"type":           "static",
"name":           "WebKit (inactive)",
"query_url":      "/xray/webkit/query",
"probe_url":      "/xray/webkit/probe",
"static_payload": "/system/lib/libwebcore.so"

}

{ 
"id":              "exynos",
"type":            "dynamic",
"name":            "Exynos",
"result_url":      "/xray/exynos/result",
"dynamic_slot":    "06",
"dynamic_payload_armeabi":         "/xray/static/exynos/armeabi/libexynos_v1.so",
"dynamic_signature_armeabi":       "vrX...",
"dynamic_payload_armeabi-v7a":     "/xray/static/exynos/armeabi-v7a/libexynos_v1.so",
"dynamic_signature_armeabi-v7a":   "mbe...",
"dynamic_payload_mips":            "/xray/static/exynos/mips/libexynos_v1.so",
"dynamic_signature_mips":          "F33...",
"dynamic_payload_x86":             "/xray/static/exynos/x86/libexynos_v1.so",
"dynamic_signature_x86":           "Lu7..."

},

Static probe:
Dynamic probe:
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X-Ray distribution

● Not in Google Play*, but free for download at http://xray.io

● Results collected by us (and Five Eyes) from users who 
ran the X-Ray app on their Android device:

74,405 devices
4,312 models
190 countries

* don’t ask

http://xray.io/
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Aside: Android exploitation challenges 

● Android fragmentation is _real_
○ Not for app dev, but for exploit dev

● X-Ray’s binary dataset
○ 3,124 unique libsysutils.so
○ 5,936 unique libdvm.so
○ 5,303 unique vold

● If only there was a way to collect all those binaries...
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Scary numbers

● 6 months after the X-Ray release…

● Percent of the global Android population that are 
vulnerable to a privilege escalation detected by X-Ray...

60.6% vulnerable
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Methodology

● How to extrapolate out to global Android population?
● Selection bias?

● Google provides stats 
on Android versions →

● If we saw 98.8% of 2.2 devices 
were vulnerable, and 2.2 makes 
up 15.5% of Android globally, that contributes 
15.3% to the total % of vulnerable Android devices.
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Death of an Android vuln
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Changes over time

60.6% vulnerable 41.2% vulnerable

Early 2013Late 2012

13.4% vulnerable

Early 2014

Looks like OK progress, but...
Only measuring those original 8 ancient privesc vulns from X-Ray 1.0, not any new ones!
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OEM vendor fuckups

● Versions that shouldn’t be patched, but are!
● Version 2.3.2, but not vuln to gingerbreak
● Backports without version bumps

● Versions that should be patched, but aren’t!
● Version 4.1, but still vuln to mempodroid
● Incomplete patching, regressions

● OEM vendors relying on public exploits 
to do vuln assessment
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Failed exploit != patched

● SORRY. I WRITE CRAPPY EXPLOITS. 

● OEM vendor inquiry:
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Database of vulnerable models
“The vulnerability affects Android devices with the PowerVR SGX chipset
which includes popular models like the Nexus S and Galaxy S series. The 
vulnerability was patched in the Android 2.3.6 OTA update.”

It’s like PRISM...for Android!

mysql> SELECT COUNT(DISTINCT(model)) 
FROM results
WHERE probe='levitator' 
AND result='vulnerable';
+------------------------+
| COUNT(DISTINCT(model)) |
+------------------------+
|                    136 |
+------------------------+

mysql> SELECT DISTINCT(model) 
FROM results
WHERE probe='levitator'
AND result='vulnerable' 
AND model LIKE '%Kindle%';
+-------------+
| model       |
+-------------+
| Kindle Fire |
+-------------+

OOPS! 
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XRAY Overview

TOP SECRET//COMINT//REL TO USA, FVEY//20230108

➢ (S//SI//REL) Covert platform for mobile TAO implants
○ Highly successful (~75,000 active implants worldwide)

➢ (S//SI) Metadata selector types
○ Device ID, manufacturer, model, version, carrier, country, IP address, 

vulnerability state

➢ (S//SI) Integrates with POOPCHUTE and BLAMEVUPEN
○ Palm Pilot support in development

XRAY Project Results
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Lessons learned from X-Ray

● Man, OEMs and carriers sure 
suck at patching.

● If only there was some way to 
patch these vulns ourselves!

● BRING OUT THE GERMAN!
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Use Bug to Gain Root to Patch Bug
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Use Bug to Gain Root to Patch Bug

Introducing 

PatchDroid
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Use Bug to Gain Root to Patch Bug

Introducing 

PatchDroid

...but we actually have users root their devices
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Challenges
● No access to source code

○ AOSP != code running on devices
○ modifications by OEMs

● Can’t modify system files and/or partitions
○ patched binaries might brick device
○ cannot replace signed partitions or files on them

● Scalability and testing
○ too many different devices and OS versions
○ patches need to be decoupled form source code
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PatchDroid
● Third-party security patches for Android

○ includes: attack detection and warning mechanism

● Independent of device and Android version
○ support for Dalvik bytecode and native code
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PatchDroid cont.
● Scalable

○ only develop patch once, patch any device
○ test patches in the field

● Practical
○ almost no overhead (user won’t notice any)
○ we don’t need source code

■ not everything of Android is open source
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PatchDroid - The System
● In-memory patching at runtime

○ need to patch processes at startup
■ before process executes vulnerable code
■ monitor system for new processes

○ no need to modify system files or system partitions
■ important!
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PatchDroid - The System cont.
● Patches as independent code

○ self-contained shared library
○ patching via function hooking
○ no access to original source code required
○ scale across different OS versions
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Overview
● PatchDroid system architecture
● Patches in our system

○ creating a patch
● Technical insights
● ReKey!

○ a public release of PatchDroid
● Demo 
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Architecture
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Architecture
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Architecture
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Anatomy of a Patch
● Replacement for vulnerable function

○ equivalent code without vulnerability
○ wrapper that adds input/output sanitization

● Install
○ hook vulnerable function

■ keep original function usable, we will need it later
● Communication link

○ read config parameters
○ write log messages, report attacks
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Lifetime of a Patch
● Deployment 

○ trace target process
○ setup communication
○ inject patch library
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Lifetime of a Patch
● Installation

○ connect communication
○ hook function(s)
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Lifetime of a Patch
● Fixed function is called

○ log (and report attack)
○ collect telemetry
○ (call original function)
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Lifetime of a Patch
● Patch failure

○ detected using telemetry
○ failing patch is removed

● This is tricky
○ works only to certain extend
○ but enables some kind of field testing
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Creating a Patch
● Extract patch from source, transform to PatchDroid patch

○ apply patch strategy best suited for vulnerability
○ sources: e.g., AOSP, Cyanogen, etc...

● Develop custom patch
○ vulnerability known, but no patch available
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Patching Strategies

● replace

● proxy

● add return value check
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Source Patch -> PatchDroid Patch

● Missing return value check
○ mEntries.put() returns != null,key is already used
○ dup key == multiple zip entries with same name
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Transform
● Hook: java.lang.LinkedHashMap.put()

○ call orig method and check return value
○ throw exception if result != null

● LinkedHashMap is used outside of ZipFile
○ need to only patch behavior in ZipFile code

● Hook: java.util.ZipFile.readCentralDir()
○ install hook for LinkedHashMap
○ call original readCentralDir()
○ unhook LinkedHashMap
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PatchDroid - Implementation
● patchd: the patch daemon

○ monitor system for newly created process
○ inject patches into process
○ monitor patched process

● PatchDroid App
○ UI
○ Helper Service
○ Attack Notification
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Hooking Techniques
● Native patches based on ADBI

○ framework for hooking native code on Android
○ http://github.com/crmulliner/adbi/

● Dalvik patches based on DDI
○ framework for hooking Dalvik methods
○ http://github.com/crmulliner/ddi/

http://github.com/crmulliner/adbi/
http://github.com/crmulliner/adbi/
http://github.com/crmulliner/ddi/
http://github.com/crmulliner/ddi/
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Insights
● patchd uses ptrace() for monitoring and injection

○ most target processes run as root
○ patchd -> requires root

● PatchDroid app lives in /data/data/…
○ no need to modify ‘/system’ file system

■ often signed and checked by bootloader
○ can be installed/removed like any other app

■ we don’t want to brick devices
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Patches
● Native                                     Target Process

○ Zimperlich zygote
○ GingerBreak vold
○ ZergRush vold

● Dalvik
○ Local SMS Spoofing system_server
○ MasterKey system_server
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MasterKey Bug
● Discovered by the guys from BlueBox

● Bug in handling of APK files
○ APK can be modified without breaking its signature

● Can be used for privilege escalation (root device)
○ modify APK signed with platform/oem key
○ that APK roots any device from given OEM!
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MasterKey Bug cont.
● Actually multiple bugs

● Bugs in Java code (Dalvik bytecode)
○ first priv esc vuln due to bug in Dalvik bytecode

● Bug present in AOSP until version 4.3
○ Affected almost all Android devices at that time
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Patching MasterKey Bug(s)
● Patching Strategies

○ Add missing return value check
○ Add input/output sanitisation (thru proxy function)

● Fast turnaround
○ 3 hours for initial version, coding + testing
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ReKey
● Special version of PatchDroid

○ Patches for MasterKey only!

● Released on July 16th 2013
○ Available Google Play!

● ReKey your device
○ http://rekey.io
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PatchDroid / ReKey - Demo
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Data & Stats
● Google Play

● ReKey opt-in 



Mulliner and Oberheide, CSW 2014 

ReKey Stats - installs

remember: we require a pre-rooted device
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ReKey Stats - Android versions
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ReKey Stats - Devices
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ReKey opt-in data
● 7k logs

● 942 unique device models

● Android versions
○ 1.5.1 to 4.4.2
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Lessons Learned

“My ZTE Score M, is badly hacked and 
your software detected it, after I found 
obvious examples (all of which I video-
taped). Help please if possible? Thank 
you.”

STAHP.
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Conclusions

● Android security is fucked
● More public pressure on the responsible parties

● Top-down from Google
● Bottom-up from users and companies

● Open up platform security to third-parties?
● Allow enterprises, third-parties to offload patching 

responsibility
● Better platform security in general, less vulns to patch
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What’s Next?
● PatchDroid / ReKey

○ basically working but still a PoC 

● Add patches for vendor specific bugs!?
○ that’s a lot of bugs

● Open Source it?
○ X-Ray probes are woefully out of date
○ Exynos, Webkit, MasterKey, etc
○ Interest in open source version for 

community development and new probes?
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Q & A

http://x-ray.io
http://rekey.io
http://patchdroid.com

detailed academic paper 

twitter:
     @collinrm  @jonoberheide

http://x-ray.io
http://x-ray.io
http://rekey.io
http://rekey.io
http://patchdroid.com
http://patchdroid.com
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Thanks & Greetz

● mudge
○ DARPA $$$

● Joshua ‘jduck’ Drake 
○ heavy PatchDroid testing

● Greetz
○ zach, ben, van Hauser, i0nic, AHH crew 
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Alternative ‘Hotpatching’ Tools

● Xposed framework
○ made for modding Android without reflashing FW
○ replaces zygote

● Cydia Substrate
○ mode for modding Android without reflashing FW
○ complex


