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Thanks, Mudge!

Mulliner and Oberheide, CSW 2014



Android
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Android

Most popular smartphone platform
about 1 billion devices today
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This dude is in trouble
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Lets patch him up!

A5
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WTF are we doing here people

e Anti-malware
o 99.9%* of Android malware is bullshit toll fraud

e MDM
o “Manage” your way out of an insecure platform

o HEY | CAN SEE ALL MY VULNERABLE DEVICES,
YAY!
e Other features of mobile “security” products
o Find my phone (G does it), backup (G does it), ...?

* | just made this up, kinda
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How about...

e Maybe we try to fix the underlying issues?
o “Enumerating badness” always doomed to fail

o Naw, that's crazy talk!

e Underlying issues (in our not-so-humble opinion)
o Lack of platform integrity
o Privilege escalation vulns, large attack surface

o Huge windows of vuln due to slow/non-existing
patching practices
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Our research

e Investigated Android vulns and solutions
o Vulns in native and managed code

o More than privesc! < Lookout
e Let’s show what can be done rdng »
o Mostly PoC, but deployed to ARSI ==
100k’s of real-world devices .
o |f we can do this on the cheap, Cost Category | Cost Subfofal
. . Labor $154,000
maybe Big Corp can do it for reals Materials | 54,000

Travel $2.916

o “Defensive” talk, booooooooo Total $160,916
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A tale of three projects

e Vulns exist
o X-Ray X- Ray

FOR ANDROID™

e How to get rid of them
o PatchDroid

e How to brick a lot of people’s phones ;-) 0
o ReKey
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Ideal mobile ecosystem...HA!

e |n a perfect world...
e AOSP: Google ships a secure base platform.

e OEM: Samsung and third-party suppliers don'’t
Introduce vulns in their handsets and customizations.

e Carrier: T-Mobile rolls out rapid OTA updates to keep
users up to date and patched.

Mulliner and Oberheide, CSW 2014



Real-world mobile ecosystem

e In the real world...
e AOSP: Android improving mitigations, but slowly.

e OEM: Customizations by device OEMs are a primary
source of vulnerabilities.

e Carrier: Updates are not made available for months
and sometimes even years.
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Real-world mobile ecosystem

e In the real world...

. All software has vulns, mobile or otherwise. |

source of vulnerabilities.

°o | Failing to deliver patches is the real issue.
and sometimes even years.
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Disclosure & patching process

weeks

Google

days months months [

Public > Attackers
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Challenges in patching

e \Why is mobile patching challenging?
e Complicated software supply chain
e Testing, testing, testing
e Risk of bricking devices
e Inverted economic incentives

® \Vant to patch your device's vulnerabilities?
e |oadset controlled by carrier
e Can't patch the device (unless rooted)
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What the carriers say

’ Android™ source code available

"Patches must be integrated and tested for different platforms
fo ensure the best possible user experience. Therefore,
distribution varies by manufacturer and device." - AT&T
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What the carriers say

hlatforms

to ensure re,
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Privilege escalation vulnerabilities

e Android security model
e Permissions framework, “sandboxing” (Linux uid/gid)
e Compromise of browser (or other app) != full control of device

e Privilege escalation vulnerabilities
e Unprivileged code execution — Privileged code execution
e Publicly released to allow users to jailbreak their devices
e Public exploits reused by mobile malware to root victim's devices

e Ooooh, fancy mobile privesc, right??? e
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Quick trivia

e \What's wrong with the following code?

/* Code intended to run with elevated privileges */
do stuff as privileged();

/* Drop privileges to unprivileged user */
setuid (uid) ;

/* Code intended to run with lower privileges */
do stuff as unprivileged();

e Assuming a uid/euid=0 process dropping privileges...
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Zimperlich vulnerability

e Return value not checked! setuid(2) can fail:

EAGAIN The uid does not match the current
uid and uid brings process over its
RLIMIT NPROC resource limit.

e Android's zygote does fail if setuid does:

err = setuid(uid);
if (err < 0) {
LOGW ("cannot setuid(%d): %s", uid, strerror(errno));

}

e Fork until limit, when setuid fails, app runs as uid 0!
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A sampling of privesc vulns
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ASHMEM: Android kernel mods, no mprotect check
Exploid: no netlink source check, inherited from udev
Exynos: third-party device driver, kmem read/write
Gingerbreak: no netlink source check, GOT overwrite
Levitator: My First Kernel Module.ko, kmem read/write
Mempodroid: inherited from upstream Linux kernel
RageAgainstTheCage: no setuid retval check
Wunderbar: inherited from upstream Linux kernel
Zimperlich: no setuid retval check

ZergRush: UAF in libsysutils



X-Ray for Android

e How can we measure this problem? —
e X-Ray for Android —
e DARPA CFT funded
e Performing _actual_
vuln assessment on mobile -
e Detects most common privescs
e \Works without any special privileges
or permissions

Zimperlich

http://xray.io
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Static probes

e Static probes
e Can identify vulnerabilities using static analysis

e Send up vulnerable component (eg. binary, library) to service
e Disassemble and look for patched/vulnerable code paths

libdvm.so ——m X-Ray
Analyze! Service

- result
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Static probe example: Zimperlich

|BLA __dnuroiu_roy_print l|
6 Y
[
loc_5A834 ; uid
MOVS RO, R6
BLX ketuid
CMP RO, #0
BGE loc_5A856
V_"
[
BLX __errno
LDR R3, =(aCannotSetuidDE - 0x87FC4)
LDR Rl, =(aDalvikvm_0 - 0x87FC4)
LDR R7, [Rol
ADDS R2, R4, R3 ; "cannot setuid(%d) errno: %d"
ADDS Rl, R4, Rl ; "dalvikvm"
MOVS RO, #5
MOVS R3, R6
STR R7, [SP,#0x30+var_ 30]
BLX andro1d | log_print
‘ Y
[ < = h
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Ok, what does it _really look like?

e |33t static analysis...aka ghetto objdump/python/grep

# look for setuid line starting at the setgid line
for j in xrange(i, len(lines)):
line = lines[j]
if line.endswith('<dvmAbort
dvmabort = True
if line.endswith('<setuid@plt>
break
else:
return base.RESULT UNKNOWN, ‘did not find setuid

# if we found dvmAbort between setgid and setuid, we're patched
if dvmabort:

return base.RESULT PATCHED,
else:

return base.RESULT VULNERABLE,

e Do we need to be that smart or perfect? Thankfully, no.
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Dynamic probes (aka psuedo-exploits)

e Dynamic probes
e Not all vulnerabilities are in software components we can access
e Example: kernel vulns, kernel image not accessible by X-Ray
e Probe locally for vulnerability presence!
e Basically sad, neutered, wacky half exploits :-(

halp!

[r—

] — liblevitator v1.so
Execute!

- result
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Dynamic probe example: Levitator

pkg.ui32BridgeID = CONNECT SERVICES;
pkg.u132Size = sizeof(pkg):
pkg.u132InBufferSize = 0;
pkg.pvParamIn = NULL;
pkg.u1320utBufferSize = DUMP_SIZE;
pkg.pvParamOut = dump;

ret = 1octl(fd, 0, &pkqg):

if (ret == 0) {
result = "vulnerable|leaked kernel memory";
goto done;

} else {
result = "patched|can’'t leak kernel memory";
goto done;
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snprintf(buf, sizeof(buf), "ACTION=add*:cDEVPATH=/" DEV NODE "*cSUBSYSTEM=exploid-c

ret = sendmsg(sock, &msg, 0);

if (ret == -1) {
result = "patched|can't send payload";
goto close;

}
sleep(l);

ret = stat(DEV PATH, &sbuf);
if (ret == -1) {
result = "patched|can't find exploid device";
} else {
result = "vulnerable|found exploid device";
}

snprintf(buf, sizeof(buf), "ACTION=remove*cDEVPATH=/" DEV NODE "<=cSUBSYSTEM=exploi
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Probe manifests in JSON

{

Static probe: ‘g

Dynamic probe:
{

"id":

"type":

"name" :

"result url":
"dynamic slot":

"dynamic payload armeabi:

"type":
"name" :
"query url":
"probe url":

"exynos", "static payload":
"dynamic", }

"Exynos",

"/xray/exynos/result",

"06"’

"dynamic signature armeabi": "vrX...",

"dynamic payload armeabi-v7a":

"dynamic signature armeabi-v7a": "mbe...",

"dynamic payload mips":

"dynamic signature mips": "F33...",

"dynamic payload x86":

"dynamic signature x86": "Lu7..."

I
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"webkit",

"static",

"WebKit (inactive)",
"/xray/webkit/query",
"/xray/webkit/probe",
"/system/1lib/libwebcore.so"

"/xray/static/exynos/armeabi/libexynos vl.so",
"/xray/static/exynos/armeabi-v7a/libexynos vl.so",
"/xray/static/exynos/mips/libexynos vl.so",

"/xray/static/exynos/x86/libexynos vl.so",



X-Ray distribution

e Not in Google Play*, but free for download at http://xray.io

e Results collected by us (and Five Eyes) from users who
ran the X-Ray app on their Android device:

74,405 devices
4,312 models
190 countries

*don’t ask
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http://xray.io/

Aside: Android exploitation challenges

e Android fragmentation is _real
o Not for app dev, but for exploit dev

e X-Ray’s binary dataset H
o 3,124 unique libsysutils.so . '
o 95,936 unique libdvm.so
o 5,303 unique vold

e If only there was a way to collect all those binaries...

Mulliner and Oberheide, CSW 2014



Scary numbers

e 6 months after the X-Ray release...

e Percent of the global Android population that are
vulnerable to a privilege escalation detected by X-Ray...

60.6% vulnerable
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Methodology

e How to extrapolate out to global Android population?
e Selection bias?

‘ eycon
| Ice Cream Sandwich
e Google provides stats | i’
\ e — Jolly Bean

on Android versions —

~— Eclair & older

~—— Froyo

o If we saw 98.8% of 2.2 devices
were vulnerable, and 2.2 makes
up 15.5% of Android globally, that contributes
15.3% to the total % of vulnerable Android devices.
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Death of an Android vuln
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Changes over time

Honeycomb
Honeycomb
Ice Cream Sandwich \
e — J¢ly Bean ‘ ‘Jolly Bean ‘Kiﬂ(z{x}x
Gingerbread

Ice Cream Sandwich Jelly Bean

~— Eclair & older — Eclair & older

Gingerbread .
~— Froyo Gingerbread

Froyo

——————Honeycomb

Ice Cream Sandwich

Late 2012 Early 2013 Early 2014

60.6% vulnerable 41.2% vulnerable 13.4% vulnerable

Looks like OK progress, but...
Only measuring those original 8 ancient privesc vulns from X-Ray 1.0, not any new ones!
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OEM vendor fuckups

e Versions that shouldn’t be patched, but are!
e \ersion 2.3.2, but not vuln to gingerbreak
e Backports without version bumps

e Versions that should be patched, but aren’t!
e Version 4.1, but still vuln to mempodroid
e Incomplete patching, regressions

e OEM vendors relying on public exploits
to do vuln assessment
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Failed exploit != patched

e OEM vendor inquiry:

| was trying out X-Ray on a ||l device, and Levitator is flagged as being wilnerable.
From a quick read of the PoC and the Google bug, this should have been fixed in the version
of Android used on [J}(2.6.35), but since the code fix is not public | was not able to confirm
against the [ source code.

| did try building and running your PoC, and it fails with this output:
$ ./levitator

[+] looking for symbols...

[+] resolved symbol commit_creds to OxcO0a72dc

[+] resolved symbol prepare_kernel cred to OxcO0a714c

[-] dev_attr_ro symbol not found, aborting!

Is X-Ray mistaken here, or do you have a modified PoC that works on later kernels?

e SORRY. | WRITE CRAPPY EXPLOITS.

Mulliner and Oberheide, CSW 2014



Database of vulnerable models

“The vulnerability affects Android devices with the PowerVR SGX chipset
which includes popular models like the Nexus S and Galaxy S series. The
vulnerability was patched in the Android 2.3.6 OTA update.”

mysqgl> SELECT COUNT (DISTINCT (model)) mysqgl> SELECT DISTINCT (model)

FROM results FROM results

WHERE probe='levitator' WHERE probe='levitator'

AND result='vulnerable'; AND result='vulnerable'

Fomm + AND model LIKE 'S$Kindle%';

| COUNT (DISTINCT (model)) | - +

Fomm + | model |

| 136 | - +

Fomm + | Kindle Fire |
e +

It's like PRISM...for Android!
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XRAY Project Results

> (S//SI//REL) Covert platform for mobile TAO implants
o Highly successful (~75,000 active implants worldwide)

> (S//SI) Metadata selector types

o Device ID, manufacturer, model, version, carrier, country, IP address,
vulnerability state

> (S//SI) Integrates with POOPCHUTE and BLAMEVUPEN

o Palm Pilot support in development

TOP SECRET//COMINT//REL TO USA, FVEY//20230108
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Lessons learned from X-Ray

- .
v
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| . o memegeneratopsEn
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Man, OEMs and carriers sure
suck at patching.

If only there was some way to
patch these vulns ourselves!

BRING OUT THE GERMAN!



Use Bug to Gain Root to Patch Bug
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Use Bug to Gain Root to Patch Bug

Introducing

PatchDroid
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Use Bug to Gain Root to Patch Bug

Introducing

PatchDroid

...but we actually have users root their devices
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Challenges

e No access to source code

o AOSP != code running on devices

o modifications by OEMs
e Can’t modify system files and/or partitions

o patched binaries might brick device

o cannot replace signed partitions or files on them
e Scalability and testing

o too many different devices and OS versions

o patches need to be decoupled form source code
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PatchDroid

e Third-party security patches for Android
o includes: attack detection and warning mechanism

e Independent of device and Android version
o support for Dalvik bytecode and native code
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PatchDroid cont.

e Scalable
o only develop patch once, patch any device
o test patches in the field

e Practical
o almost no overhead (user won't notice any)
o we don’t need source code
m not everything of Android is open source
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PatchDroid - The System

e In-memory patching at runtime
o need to patch processes at startup
m before process executes vulnerable code
m monitor system for new processes
o no need to modify system files or system partitions
m important!
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PatchDroid - The System cont.

e Patches as independent code
o self-contained shared library
o patching via function hooking
© Nno access to original source code required
o scale across different OS versions
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Overview

e PatchDroid system architecture
e Patches in our system
o creating a patch
e Technical insights
e ReKey!
o a public release of PatchDroid

e Demo
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Architecture

Mulliner and Oberheide, CSW 2014
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Architecture

Identify newly created processes
- trace init and zygote
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Architecture

device \I
PatchDroid

init

Deploy patch into process
- library injection

T |

cloud

 patch repository '\
\ process A I
 log event receiver | |
: N |
l‘ processB | |
|
|
|
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Architecture

device

PatchDroid

)

—_—

init

Monitor execution of patch code
- check for instabilities
- collect logs

zygote

process A

T

I

I

I

|‘
iwmm
\

process B |
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Architecture

device \
PatchDroid

init

g' cloud \I

Analyze log for exploitation
attempt

- i process A
 log event receiver + |

e e e |

process B
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Architecture

cloud

 patch repository '\

PatchDroid App
-GUI
-display alerts

device
PatchDroid

init

process A

process B
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Architecture

device \I
PatchDroid |

PatchDroid cloud infrastructure
-central logging + reporting
-patch repository

[
|
|

init

cloud e
 patch repository \
N I
‘ N process A
 log event receiver
\ JN
process B
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Anatomy of a Patch

e Replacement for vulnerable function

o equivalent code without vulnerability

o wrapper that adds input/output sanitization
e Install

o hook vulnerable function

m Kkeep original function usable, we will need it later

e Communication link

o read config parameters

o write log messages, report attacks
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Lifetime of a Patch

e Deployment
o trace target process datchd oo @
o setup communication a

T [inject 3)

o inject patch library rece (1)

m
€
mapshm (4) m

‘o";c{all fixed (6)
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Lifetime of a Patch

e Installation
o connect communication catchd create st )
o hook function(s) e

" Call fixed (6)
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Lifetime of a Patch

e Fixed function is called
o log (and report attack) oatchd | createshm 2
o collect telemetry ™
o (call original function)

m
. inject (3)
trace (1): ©
mapshm (4) m

- report (7)
L call fixed (6)
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Lifetime of a Patch

e Patch failure
o detected using telemetry oatchd creste st 2
o failing patch is removed n

. inject (3)
trace (1):

map shm (4)

,.":‘c(all fixed (6)
e This is tricky

o works only to certain extend

o but enables some kind of field testing
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Creating a Patch

e Extract patch from source, transform to PatchDroid patch
o apply patch strategy best suited for vulnerability
o sources: e.g., AOSP, Cyanogen, etc...

e Develop custom patch
o vulnerability known, but no patch available
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Patching Strategies

Original Patched

vulnerable function > -
e replace

vulnerable function

vulnerable function

® proxy

vulnerable function vulnerable function
call w/o ret val check call w/o ret val check

e add return value check —
important return value »

function
important return value
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Source Patch -> PatchDroid Patch

luni/src/main/javaljaval/util/zip/ZipFile.java

=Commit Message  Up to change ZipFileTest.java=
& Patch Set Base 1 [ Patch Set 1 [ E3
+10 ¥ ... skipped 355 common lines ... +10 §
356 if (numeEntries != totalNumentries || diskNumber != 0 || diskWithCentralDir != 0) { if (numEntries != totalNumentries || diskNumber != 0 || diskWithCentralDir != 0) { 356
357 throw new ZipException("spanned archives not supported"); throw new ZipException("spanned archives not supported"); 357
358 } } 358
359 359
360 // Seek to the first CDE and read all entries. // Seek to the first CDE and read all entries. 360
361 RAFStream rafs = new RAFStream(mRaf, centralDirOffset); RAFStream rafs = new RAFStream(mRaf, centralDirOffset); 361
362 BufferedInputStream bin = new BufferedInputStream(rafs, 4096); BufferedInputStream bin = new BufferedInputStream(rafs, 4096); 362
363 byte[] hdrBuf = new byte[CENHDR]; // Reuse the same buffer for each entry. byte[] hdrBuf = new byte[CENHDR]; // Reuse the same buffer for each entry. 363
364 for (int 1 = 0; i < numEntries; ++i) { for (int 1 = 0; i < numEntries; ++i) { 364
» 365 ZipEntry newEntry = new ZipEntry(hdrBuf, bin); ZipEntry newEntry = new ZipEntry(hdrBuf, bin); 365
366 mEntries.put(newEntry.getName(), newEntry); String entryName = newEntry.getName(); 366
if (mEntries.put(entryName, newtEntry) != null) { 367
throw new ZipException("Duplicate entry name: " + entryName); 368
} 369
367 } } 370
368 } 37N

e Missing return value check |
o mEntries.put () returns != null,key is already used
o dup key == multiple zip entries with same name
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Transform

e Hook: java.lang.LinkedHashMap.put ()
o call orig method and check return value
o throw exception if result != null
e LinkedHashMap is used outside of ZipFile
o need to only patch behavior in ZipFile code
e Hook: java.util.ZipFile.readCentralDir ()
o install hook for LinkedHashMap
o call original readCentralDir ()
o unhook LinkedHashMap
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PatchDroid - Implementation

e patchd: the patch daemon
o monitor system for newly created process
o Inject patches into process
o monitor patched process

e PatchDroid App
o Ul
o Helper Service
o Attack Notification
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PatchDroid - Implementation

e patchd: the patch daemon

AW | patchDrold - WARNING
PatchDroid - WARNING Bug GingerBreak (vold) was triggered in /

Bug ZipEntry bug, APK integrity issu was system/bin/vold by PID 9357 at
triggered in system_server by PID 177 at 1365456384

1373318037

A
icC 22dgto

P
L
A Q N_—
- ~
=

o Ul
o Helper Service
o Attack Notification
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Hooking Techniques

e Native patches based on ADBI
o framework for hooking native code on Android
o http://github.com/crmulliner/adbi/

e Dalvik patches based on DDI
o framework for hooking Dalvik methods
o http://qithub.com/crmulliner/ddi/
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e patchd uses ptrace () for monitoring and injection
o most target processes run as root
o patchd -> requires root

e PatchDroid app lives in /data/datal/...
o no need to modify ‘/system’ file system
m often signed and checked by bootloader
o can be installed/removed like any other app
m we don’t want to brick devices
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e Native
o Zimperlich
o GingerBreak
o ZergRush

e Dalvik
o Local SMS Spoofing
o MasterKey

Mulliner and Oberheide, CSW 2014

Target Process
zygote

vold

vold

system_server
system_server



e Native
o Zimperlich
o GingerBreak
o ZergRush

e Dalvik
o Local SMS Spoofing

o MasterKey
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Target Process
zygote

vold

vold

system_server

system_server



MasterKey Bug

e Discovered by the guys from BlueBox

e Bug in handling of APK files
o APK can be modified without breaking its signature

e Can be used for privilege escalation (root device)
o modify APK signed with platform/oem key
o that APK roots any device from given OEM!
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MasterKey Bug cont.

e Actually multiple bugs

e Bugs in Java code (Dalvik bytecode)
o first priv esc vuln due to bug in Dalvik bytecode

e Bug present in AOSP until version 4.3
o Affected almost all Android devices at that time
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Patching MasterKey Bug(s)

e Patching Strategies
o Add missing return value check
o Add input/output sanitisation (thru proxy function)

e Fast turnaround
o 3 hours for initial version, coding + testing
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e Special version of PatchDroid
o Patches for MasterKey only!

e Released on July 16th 2013
o Available Google Play!

e ReKey your device
o http://rekey.io
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PatchDroid / ReKey - Demo

LRIt

Device Secured
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Data & Stats

e (Google Play

e ReKey opt-in
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ReKey Stats - installs

APP NAME PRICE CURRENT /TOTAL AVG. RATING /
INSTALLS TOTAL #
€) Rekey (for rooted phones) 1.0.6 Free 8.057 / 32,732 * 4.04 | 368

remember: we require a pre-rooted device
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ReKey Stats - Android versions

CURRENT INSTALLS BY DEVICE ON MAR 10, 2014

ALL APPS IN TOP 10 ANDROID VERSIONS FOR
YOUR APP TOOLS TOOLS
w " Android 4.1 5666 33.09% 29.07% Android 4.1 29.07%
¢ W Android 2.3.3-2.3.7 1300 16.25% 22.66% Android 2.3.3-2.3.7 22.66%
2+ 1 Android 4.2 1909 16.25% 11.92% Android 4.0.3 - 4.0.4 14.04%
() @ Android 4.0.3-4.0.4 1137 14.11% 14.04% Android 4.3 13.59%
- M Android 4.3 762 9.46% 13.59% Android 4.2 11.92%
) M Android 4.4 — 4.21%  Android 4.4 4.21%
- M Android 2.2 50 s 3.46%  Android 2.2 i
) ' Android 2.1 o 0.52% 0.33%  Androld 3.2 0.46%
(1 ' Android 3.2 6 0.07% 0.46% Android 2.1 0.33%
(] W Android 3.1 1 0.04% 0-14% Android 3.1 0.14%
M others 5 0.06%
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ReKey Stats - Devices

CURRENT INSTALLS BY DEVICE ON MAR 10, 2014

YOUR APP

2+ | Hisense New Androm... 557 6.91%
2 B samsung Galaxy S2 (... 547 6.74%
< ! samsung Galaxy S3 (... 497 5.42%
1 @ Google Nexus 7 (grou... 166 2.06%
1 I Google Nexus 4 (mako) 158 1.96%
) I HTC Desire (bravo) 147 1.82%
] M samsung Galaxy S (G... 145 1.80%
@ Samsung Galaxy Note... 125 1.55%
] ' samsung Galaxy $4 (... 116 1.44%
] M samsung Galaxy Nex... 103 1.28%

B Others 5,560  69.01%
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ReKey opt-in data

e /klogs

e 942 unique device models

e Android versions
o 151t04.4.2
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Lessons Learned

“‘My ZTE Score M, is badly hacked and
your software detected it, after | found
obvious examples (all of which I video-

taped). Help please if possible? Thank
you.”

STAHP.




Conclusions

e Android security is fucked
e More public pressure on the responsible parties
e Top-down from Google
e Bottom-up from users and companies
e Open up platform security to third-parties?
e Allow enterprises, third-parties to offload patching
responsibility
e Better platform security in general, less vulns to patch
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What’s Next?

e PatchDroid / ReKey

o basically working but still a PoC

e Add patches for vendor specific bugs!?
o that's a lot of bugs

e Open Source it?
o X-Ray probes are woefully out of date
o Exynos, Webkit, MasterKey, etc
o Interest in open source version for
community development and new probes?
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nttp://x-ray.io
nttp://rekey.io

nttp://patchdroid.com
detailed academic paper

twitter:
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Thanks & Greetz

e mudge
o DARPA $%$%

e Joshua ‘jduck’ Drake
o heavy PatchDroid testing

o Greetz
o zach, ben, van Hauser, iOnic, AHH crew
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Alternative ‘Hotpatching’ Tools

e Xposed framework
o made for modding Android without reflashing FW
o replaces zygote

e Cydia Substrate

o mode for modding Android without reflashing FW
o complex
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