The Real Deal of Android Device Security:
The Third Party

Collin Mulliner and Jon Oberheide

CanSecWest 2014

Introductions

e Collin Mulliner e Jon Oberheide

Mulliner and Oberheide, CSW 2014

Mu

#Cats4Fun
§7: Jon Oberheide +2 Follow
jonoberheide

Announcing Cats4Fun: $1000 USD
to the cat charity of your choosing for
the best cat picture brought to the
#pwn2own booth at CanSecWest.

E i g: Jon Oberheide +8
: Jon Oberhelde *L Follow : jonoberheide e

jonoberheide
As @mdowd says, the cat pictures

Only NATO:-affiliated cats are must not be withheld for 6 months
allowed. Litterbox escapes are in and cannot be cats originating from
scope. #cats4fun (or sold to) oppressive governments.

4 Reply 3 Retweet % Favorite e+ More 4 Reply ¢3 Retweet % Favorite e+ More

Thanks, Mudge!

Thanks, Mudge!

Mulliner and Oberheide, CSW 2014

Android

Mulliner and Oberheide, CSW 2014

Android

Most popular smartphone platform
about 1 billion devices today

- e . e
| TR I N | P s
s | . | N w -
e % F e n =g
- [L 1 it B I
L = ‘ - i -

Mulliner and Oberheide, CSW 2014

This dude is in trouble

Mulliner and Oberheide, CSW 2014

Lets patch him up!

A5

Mulliner and Oberheide, CSW 2014

WTF are we doing here people

e Anti-malware
o 99.9%* of Android malware is bullshit toll fraud

e MDM
o “Manage” your way out of an insecure platform

o HEY | CAN SEE ALL MY VULNERABLE DEVICES,
YAY!
e Other features of mobile “security” products
o Find my phone (G does it), backup (G does it), ...?

* | just made this up, kinda
Mulliner and Oberheide, CSW 2014

How about...

e Maybe we try to fix the underlying issues?
o “Enumerating badness” always doomed to fail

o Naw, that's crazy talk!

e Underlying issues (in our not-so-humble opinion)
o Lack of platform integrity
o Privilege escalation vulns, large attack surface

o Huge windows of vuln due to slow/non-existing
patching practices

Mulliner and Oberheide, CSW 2014

Our research

e Investigated Android vulns and solutions
o Vulns in native and managed code

o More than privesc! < Lookout
e Let’s show what can be done rdng »
o Mostly PoC, but deployed to ARSI ==
100k’s of real-world devices .
o |f we can do this on the cheap, Cost Category | Cost Subfofal
. . Labor $154,000
maybe Big Corp can do it for reals Materials | 54,000

Travel $2.916

o “Defensive” talk, booooooooo Total $160,916

Mulliner and Oberheide, CSW 2014

A tale of three projects

e Vulns exist
o X-Ray X- Ray

FOR ANDROID™

e How to get rid of them
o PatchDroid

e How to brick a lot of people’s phones ;-) 0
o ReKey

Mulliner and Oberheide, CSW 2014

Ideal mobile ecosystem...HA!

e |n a perfect world...
e AOSP: Google ships a secure base platform.

e OEM: Samsung and third-party suppliers don'’t
Introduce vulns in their handsets and customizations.

e Carrier: T-Mobile rolls out rapid OTA updates to keep
users up to date and patched.

Mulliner and Oberheide, CSW 2014

Real-world mobile ecosystem

e In the real world...
e AOSP: Android improving mitigations, but slowly.

e OEM: Customizations by device OEMs are a primary
source of vulnerabilities.

e Carrier: Updates are not made available for months
and sometimes even years.

Mulliner and Oberheide, CSW 2014

Real-world mobile ecosystem

e In the real world...

. All software has vulns, mobile or otherwise. |

source of vulnerabilities.

°o | Failing to deliver patches is the real issue.
and sometimes even years.

Mulliner and Oberheide, CSW 2014

Disclosure & patching process

weeks

Google

days months months [

Public > Attackers

Mulliner and Oberheide, CSW 2014

Challenges in patching

e \Why is mobile patching challenging?
e Complicated software supply chain
e Testing, testing, testing
e Risk of bricking devices
e Inverted economic incentives

® \Vant to patch your device's vulnerabilities?
e |oadset controlled by carrier
e Can't patch the device (unless rooted)

Mulliner and Oberheide, CSW 2014

What the carriers say

’ Android™ source code available

"Patches must be integrated and tested for different platforms
fo ensure the best possible user experience. Therefore,
distribution varies by manufacturer and device." - AT&T

Mulliner and Oberheide, CSW 2014

What the carriers say

hlatforms

to ensure re,

. cstrbut @] HAVE TII TES'I' THE PHONES *!

Privilege escalation vulnerabilities

e Android security model
e Permissions framework, “sandboxing” (Linux uid/gid)
e Compromise of browser (or other app) != full control of device

e Privilege escalation vulnerabilities
e Unprivileged code execution — Privileged code execution
e Publicly released to allow users to jailbreak their devices
e Public exploits reused by mobile malware to root victim's devices

e Ooooh, fancy mobile privesc, right??? e

Mulliner and Oberheide, CSW 2014

Quick trivia

e \What's wrong with the following code?

/* Code intended to run with elevated privileges */
do stuff as privileged();

/* Drop privileges to unprivileged user */
setuid (uid) ;

/* Code intended to run with lower privileges */
do stuff as unprivileged();

e Assuming a uid/euid=0 process dropping privileges...

Mulliner and Oberheide, CSW 2014

Zimperlich vulnerability

e Return value not checked! setuid(2) can fail:

EAGAIN The uid does not match the current
uid and uid brings process over its
RLIMIT NPROC resource limit.

e Android's zygote does fail if setuid does:

err = setuid(uid);
if (err < 0) {
LOGW ("cannot setuid(%d): %s", uid, strerror(errno));

}

e Fork until limit, when setuid fails, app runs as uid 0!

Mulliner and Oberheide, CSW 2014

A sampling of privesc vulns

Mulliner and Oberheide, CSW 2014

ASHMEM: Android kernel mods, no mprotect check
Exploid: no netlink source check, inherited from udev
Exynos: third-party device driver, kmem read/write
Gingerbreak: no netlink source check, GOT overwrite
Levitator: My First Kernel Module.ko, kmem read/write
Mempodroid: inherited from upstream Linux kernel
RageAgainstTheCage: no setuid retval check
Wunderbar: inherited from upstream Linux kernel
Zimperlich: no setuid retval check

ZergRush: UAF in libsysutils

X-Ray for Android

e How can we measure this problem? —
e X-Ray for Android —
e DARPA CFT funded
e Performing _actual_
vuln assessment on mobile -
e Detects most common privescs
e \Works without any special privileges
or permissions

Zimperlich

http://xray.io

Mulliner and Oberheide, CSW 2014

Static probes

e Static probes
e Can identify vulnerabilities using static analysis

e Send up vulnerable component (eg. binary, library) to service
e Disassemble and look for patched/vulnerable code paths

libdvm.so ——m X-Ray
Analyze! Service

- result

Mulliner and Oberheide, CSW 2014

Static probe example: Zimperlich

|BLA __dnuroiu_roy_print l|
6 Y
[
loc_5A834 ; uid
MOVS RO, R6
BLX ketuid
CMP RO, #0
BGE loc_5A856
V_"
[
BLX __errno
LDR R3, =(aCannotSetuidDE - 0x87FC4)
LDR Rl, =(aDalvikvm_0 - 0x87FC4)
LDR R7, [Rol
ADDS R2, R4, R3 ; "cannot setuid(%d) errno: %d"
ADDS Rl, R4, Rl ; "dalvikvm"
MOVS RO, #5
MOVS R3, R6
STR R7, [SP,#0x30+var_ 30]
BLX andro1d | log_print
‘ Y
[< = h

Mulliner and Oberheide, CSW 2014

Ok, what does it _really look like?

e |33t static analysis...aka ghetto objdump/python/grep

look for setuid line starting at the setgid line
for j in xrange(i, len(lines)):
line = lines[j]
if line.endswith('<dvmAbort
dvmabort = True
if line.endswith('<setuid@plt>
break
else:
return base.RESULT UNKNOWN, ‘did not find setuid

if we found dvmAbort between setgid and setuid, we're patched
if dvmabort:

return base.RESULT PATCHED,
else:

return base.RESULT VULNERABLE,

e Do we need to be that smart or perfect? Thankfully, no.

Mulliner and Oberheide, CSW 2014

Dynamic probes (aka psuedo-exploits)

e Dynamic probes
e Not all vulnerabilities are in software components we can access
e Example: kernel vulns, kernel image not accessible by X-Ray
e Probe locally for vulnerability presence!
e Basically sad, neutered, wacky half exploits :-(

halp!

[r—

] — liblevitator v1.so
Execute!

- result

Mulliner and Oberheide, CSW 2014

Dynamic probe example: Levitator

pkg.ui32BridgeID = CONNECT SERVICES;
pkg.u132Size = sizeof(pkg):
pkg.u132InBufferSize = 0;
pkg.pvParamIn = NULL;
pkg.u1320utBufferSize = DUMP_SIZE;
pkg.pvParamOut = dump;

ret = 1octl(fd, 0, &pkqg):

if (ret == 0) {
result = "vulnerable|leaked kernel memory";
goto done;

} else {
result = "patched|can’'t leak kernel memory";
goto done;

Mulliner and Oberheide, CSW 2014

snprintf(buf, sizeof(buf), "ACTION=add*:cDEVPATH=/" DEV NODE "*cSUBSYSTEM=exploid-c

ret = sendmsg(sock, &msg, 0);

if (ret == -1) {
result = "patched|can't send payload";
goto close;

}
sleep(l);

ret = stat(DEV PATH, &sbuf);
if (ret == -1) {
result = "patched|can't find exploid device";
} else {
result = "vulnerable|found exploid device";
}

snprintf(buf, sizeof(buf), "ACTION=remove*cDEVPATH=/" DEV NODE "<=cSUBSYSTEM=exploi

Mulliner and Oberheide, CSW 2014

Probe manifests in JSON

{

Static probe: ‘g

Dynamic probe:
{

"id":

"type":

"name" :

"result url":
"dynamic slot":

"dynamic payload armeabi:

"type":
"name" :
"query url":
"probe url":

"exynos", "static payload":
"dynamic", }

"Exynos",

"/xray/exynos/result",

"06"’

"dynamic signature armeabi": "vrX...",

"dynamic payload armeabi-v7a":

"dynamic signature armeabi-v7a": "mbe...",

"dynamic payload mips":

"dynamic signature mips": "F33...",

"dynamic payload x86":

"dynamic signature x86": "Lu7..."

I

Mulliner and Oberheide, CSW 2014

"webkit",

"static",

"WebKit (inactive)",
"/xray/webkit/query",
"/xray/webkit/probe",
"/system/1lib/libwebcore.so"

"/xray/static/exynos/armeabi/libexynos vl.so",
"/xray/static/exynos/armeabi-v7a/libexynos vl.so",
"/xray/static/exynos/mips/libexynos vl.so",

"/xray/static/exynos/x86/libexynos vl.so",

X-Ray distribution

e Not in Google Play*, but free for download at http://xray.io

e Results collected by us (and Five Eyes) from users who
ran the X-Ray app on their Android device:

74,405 devices
4,312 models
190 countries

*don’t ask

Mulliner and Oberheide, CSW 2014

http://xray.io/

Aside: Android exploitation challenges

e Android fragmentation is _real
o Not for app dev, but for exploit dev

e X-Ray’s binary dataset H
o 3,124 unique libsysutils.so . '
o 95,936 unique libdvm.so
o 5,303 unique vold

e If only there was a way to collect all those binaries...

Mulliner and Oberheide, CSW 2014

Scary numbers

e 6 months after the X-Ray release...

e Percent of the global Android population that are
vulnerable to a privilege escalation detected by X-Ray...

60.6% vulnerable

Mulliner and Oberheide, CSW 2014

Methodology

e How to extrapolate out to global Android population?
e Selection bias?

‘ eycon
| Ice Cream Sandwich
e Google provides stats | i’
\ e — Jolly Bean

on Android versions —

~— Eclair & older

~—— Froyo

o If we saw 98.8% of 2.2 devices
were vulnerable, and 2.2 makes
up 15.5% of Android globally, that contributes
15.3% to the total % of vulnerable Android devices.

Mulliner and Oberheide, CSW 2014

Death of an Android vuln

Mulliner and Oberheide, CSW 2014

Changes over time

Honeycomb
Honeycomb
Ice Cream Sandwich \
e — J¢ly Bean ‘ ‘Jolly Bean ‘Kiﬂ(z{x}x
Gingerbread

Ice Cream Sandwich Jelly Bean

~— Eclair & older — Eclair & older

Gingerbread .
~— Froyo Gingerbread

Froyo

——————Honeycomb

Ice Cream Sandwich

Late 2012 Early 2013 Early 2014

60.6% vulnerable 41.2% vulnerable 13.4% vulnerable

Looks like OK progress, but...
Only measuring those original 8 ancient privesc vulns from X-Ray 1.0, not any new ones!

Mulliner and Oberheide, CSW 2014

OEM vendor fuckups

e Versions that shouldn’t be patched, but are!
e \ersion 2.3.2, but not vuln to gingerbreak
e Backports without version bumps

e Versions that should be patched, but aren’t!
e Version 4.1, but still vuln to mempodroid
e Incomplete patching, regressions

e OEM vendors relying on public exploits
to do vuln assessment

Mulliner and Oberheide, CSW 2014

Failed exploit != patched

e OEM vendor inquiry:

| was trying out X-Ray on a ||l device, and Levitator is flagged as being wilnerable.
From a quick read of the PoC and the Google bug, this should have been fixed in the version
of Android used on [J}(2.6.35), but since the code fix is not public | was not able to confirm
against the [source code.

| did try building and running your PoC, and it fails with this output:
$./levitator

[+] looking for symbols...

[+] resolved symbol commit_creds to OxcO0a72dc

[+] resolved symbol prepare_kernel cred to OxcO0a714c

[-] dev_attr_ro symbol not found, aborting!

Is X-Ray mistaken here, or do you have a modified PoC that works on later kernels?

e SORRY. | WRITE CRAPPY EXPLOITS.

Mulliner and Oberheide, CSW 2014

Database of vulnerable models

“The vulnerability affects Android devices with the PowerVR SGX chipset
which includes popular models like the Nexus S and Galaxy S series. The
vulnerability was patched in the Android 2.3.6 OTA update.”

mysqgl> SELECT COUNT (DISTINCT (model)) mysqgl> SELECT DISTINCT (model)

FROM results FROM results

WHERE probe='levitator' WHERE probe='levitator'

AND result='vulnerable'; AND result='vulnerable'

Fomm + AND model LIKE 'S$Kindle%';

| COUNT (DISTINCT (model)) | - +

Fomm + | model |

| 136 | - +

Fomm + | Kindle Fire |
e +

It's like PRISM...for Android!

Mulliner and Oberheide, CSW 2014

y ‘ ;, vv 1 n—" A ol VAT st s St et et bttt ettt i s s A St Rttt et it it s e A it Sttt et et et it
A 3 AN) A Y A 1eAY 4 YR TRy a4 1Ty PR Y At " A48 A A a4 Y a4 A 1eAe AL AL A
4 o

XRAY Project Results

> (S//SI//REL) Covert platform for mobile TAO implants
o Highly successful (~75,000 active implants worldwide)

> (S//SI) Metadata selector types

o Device ID, manufacturer, model, version, carrier, country, IP address,
vulnerability state

> (S//SI) Integrates with POOPCHUTE and BLAMEVUPEN

o Palm Pilot support in development

TOP SECRET//COMINT//REL TO USA, FVEY//20230108

Mulliner and Oberheide, CSW 2014

Lessons learned from X-Ray

- .
v

iof

|

i
| . o memegeneratopsEn
an (L

Man, OEMs and carriers sure
suck at patching.

If only there was some way to
patch these vulns ourselves!

BRING OUT THE GERMAN!

Use Bug to Gain Root to Patch Bug

Mulliner and Oberheide, CSW 2014

Use Bug to Gain Root to Patch Bug

Introducing

PatchDroid

Mulliner and Oberheide, CSW 2014

Use Bug to Gain Root to Patch Bug

Introducing

PatchDroid

...but we actually have users root their devices

Mulliner and Oberheide, CSW 2014

Challenges

e No access to source code

o AOSP != code running on devices

o modifications by OEMs
e Can’t modify system files and/or partitions

o patched binaries might brick device

o cannot replace signed partitions or files on them
e Scalability and testing

o too many different devices and OS versions

o patches need to be decoupled form source code

Mulliner and Oberheide, CSW 2014

PatchDroid

e Third-party security patches for Android
o includes: attack detection and warning mechanism

e Independent of device and Android version
o support for Dalvik bytecode and native code

Mulliner and Oberheide, CSW 2014

PatchDroid cont.

e Scalable
o only develop patch once, patch any device
o test patches in the field

e Practical
o almost no overhead (user won't notice any)
o we don’t need source code
m not everything of Android is open source

Mulliner and Oberheide, CSW 2014

PatchDroid - The System

e In-memory patching at runtime
o need to patch processes at startup
m before process executes vulnerable code
m monitor system for new processes
o no need to modify system files or system partitions
m important!

Mulliner and Oberheide, CSW 2014

PatchDroid - The System cont.

e Patches as independent code
o self-contained shared library
o patching via function hooking
© Nno access to original source code required
o scale across different OS versions

Mulliner and Oberheide, CSW 2014

Overview

e PatchDroid system architecture
e Patches in our system
o creating a patch
e Technical insights
e ReKey!
o a public release of PatchDroid

e Demo

Mulliner and Oberheide, CSW 2014

Architecture

Mulliner and Oberheide, CSW 2014

cloud

patch repository N

log event receiver AN

-

N
N

_____ device
PatchDroid
init
zygote
I cess A
process B

I
I
I
I
I
I
I
I
I
I
|
J

Architecture

Identify newly created processes
- trace init and zygote

Mulliner and Oberheide, CSW 2014

device
PatchDroid

init

zygote

process A

process B

-/

Architecture

device \I
PatchDroid

init

Deploy patch into process
- library injection

T |

cloud

 patch repository '\
\ process A I
 log event receiver | |
: N |
l‘ processB | |
|
|
|

Mulliner and Oberheide, CSW 2014

Architecture

device

PatchDroid

)

—_—

init

Monitor execution of patch code
- check for instabilities
- collect logs

zygote

process A

T

I

I

I

|‘
iwmm
\

process B |

Mulliner and Oberheide, CSw 2014

Architecture

device \
PatchDroid

init

g' cloud \I

Analyze log for exploitation
attempt

- i process A
 log event receiver + |

e e e |

process B

Mulliner and Oberheide, CSW 2014

Architecture

cloud

 patch repository '\

PatchDroid App
-GUI
-display alerts

device
PatchDroid

init

process A

process B

Mulliner and Oberheide, Covi =<

Architecture

device \I
PatchDroid |

PatchDroid cloud infrastructure
-central logging + reporting
-patch repository

[
|
|

init

cloud e
 patch repository \
N I
‘ N process A
 log event receiver
\ JN
process B

Mulliner and Oberheide, CSW 2014

Anatomy of a Patch

e Replacement for vulnerable function

o equivalent code without vulnerability

o wrapper that adds input/output sanitization
e Install

o hook vulnerable function

m Kkeep original function usable, we will need it later

e Communication link

o read config parameters

o write log messages, report attacks

Mulliner and Oberheide, CSW 2014

Lifetime of a Patch

e Deployment
o trace target process datchd oo @
o setup communication a

T [inject 3)

o inject patch library rece (1)

m
€
mapshm (4) m

‘o";c{all fixed (6)

Mulliner and Oberheide, CSW 2014

Lifetime of a Patch

e Installation
o connect communication catchd create st)
o hook function(s) e

" Call fixed (6)

Mulliner and Oberheide, CSW 2014

Lifetime of a Patch

e Fixed function is called
o log (and report attack) oatchd | createshm 2
o collect telemetry ™
o (call original function)

m
. inject (3)
trace (1): ©
mapshm (4) m

- report (7)
L call fixed (6)

Mulliner and Oberheide, CSW 2014

Lifetime of a Patch

e Patch failure
o detected using telemetry oatchd creste st 2
o failing patch is removed n

. inject (3)
trace (1):

map shm (4)

,.":‘c(all fixed (6)
e This is tricky

o works only to certain extend

o but enables some kind of field testing

Mulliner and Oberheide, CSW 2014

Creating a Patch

e Extract patch from source, transform to PatchDroid patch
o apply patch strategy best suited for vulnerability
o sources: e.g., AOSP, Cyanogen, etc...

e Develop custom patch
o vulnerability known, but no patch available

Mulliner and Oberheide, CSW 2014

Patching Strategies

Original Patched

vulnerable function > -
e replace

vulnerable function

vulnerable function

® proxy

vulnerable function vulnerable function
call w/o ret val check call w/o ret val check

e add return value check —
important return value »

function
important return value

Mulliner and Oberheide, CSW 2014

Source Patch -> PatchDroid Patch

luni/src/main/javaljaval/util/zip/ZipFile.java

=Commit Message Up to change ZipFileTest.java=
& Patch Set Base 1 [Patch Set 1 [E3
+10 ¥ ... skipped 355 common lines ... +10 §
356 if (numeEntries != totalNumentries || diskNumber != 0 || diskWithCentralDir != 0) { if (numEntries != totalNumentries || diskNumber != 0 || diskWithCentralDir != 0) { 356
357 throw new ZipException("spanned archives not supported"); throw new ZipException("spanned archives not supported"); 357
358 } } 358
359 359
360 // Seek to the first CDE and read all entries. // Seek to the first CDE and read all entries. 360
361 RAFStream rafs = new RAFStream(mRaf, centralDirOffset); RAFStream rafs = new RAFStream(mRaf, centralDirOffset); 361
362 BufferedInputStream bin = new BufferedInputStream(rafs, 4096); BufferedInputStream bin = new BufferedInputStream(rafs, 4096); 362
363 byte[] hdrBuf = new byte[CENHDR]; // Reuse the same buffer for each entry. byte[] hdrBuf = new byte[CENHDR]; // Reuse the same buffer for each entry. 363
364 for (int 1 = 0; i < numEntries; ++i) { for (int 1 = 0; i < numEntries; ++i) { 364
» 365 ZipEntry newEntry = new ZipEntry(hdrBuf, bin); ZipEntry newEntry = new ZipEntry(hdrBuf, bin); 365
366 mEntries.put(newEntry.getName(), newEntry); String entryName = newEntry.getName(); 366
if (mEntries.put(entryName, newtEntry) != null) { 367
throw new ZipException("Duplicate entry name: " + entryName); 368
} 369
367 } } 370
368 } 37N

e Missing return value check |
o mEntries.put () returns != null,key is already used
o dup key == multiple zip entries with same name

Mulliner and Oberheide, CSW 2014

Transform

e Hook: java.lang.LinkedHashMap.put ()
o call orig method and check return value
o throw exception if result != null
e LinkedHashMap is used outside of ZipFile
o need to only patch behavior in ZipFile code
e Hook: java.util.ZipFile.readCentralDir ()
o install hook for LinkedHashMap
o call original readCentralDir ()
o unhook LinkedHashMap

Mulliner and Oberheide, CSW 2014

PatchDroid - Implementation

e patchd: the patch daemon
o monitor system for newly created process
o Inject patches into process
o monitor patched process

e PatchDroid App
o Ul
o Helper Service
o Attack Notification

Mulliner and Oberheide, CSW 2014

PatchDroid - Implementation

e patchd: the patch daemon

AW | patchDrold - WARNING
PatchDroid - WARNING Bug GingerBreak (vold) was triggered in /

Bug ZipEntry bug, APK integrity issu was system/bin/vold by PID 9357 at
triggered in system_server by PID 177 at 1365456384

1373318037

A
icC 22dgto

P
L
A Q N_—
- ~
=

o Ul
o Helper Service
o Attack Notification

Mulliner and Oberheide, CSW 2014

Hooking Techniques

e Native patches based on ADBI
o framework for hooking native code on Android
o http://github.com/crmulliner/adbi/

e Dalvik patches based on DDI
o framework for hooking Dalvik methods
o http://qithub.com/crmulliner/ddi/

Mulliner and Oberheide, CSW 2014

http://github.com/crmulliner/adbi/
http://github.com/crmulliner/adbi/
http://github.com/crmulliner/ddi/
http://github.com/crmulliner/ddi/

e patchd uses ptrace () for monitoring and injection
o most target processes run as root
o patchd -> requires root

e PatchDroid app lives in /data/datal/...
o no need to modify ‘/system’ file system
m often signed and checked by bootloader
o can be installed/removed like any other app
m we don’t want to brick devices

Mulliner and Oberheide, CSW 2014

e Native
o Zimperlich
o GingerBreak
o ZergRush

e Dalvik
o Local SMS Spoofing
o MasterKey

Mulliner and Oberheide, CSW 2014

Target Process
zygote

vold

vold

system_server
system_server

e Native
o Zimperlich
o GingerBreak
o ZergRush

e Dalvik
o Local SMS Spoofing

o MasterKey

Mulliner and Oberheide, CSW 2014

Target Process
zygote

vold

vold

system_server

system_server

MasterKey Bug

e Discovered by the guys from BlueBox

e Bug in handling of APK files
o APK can be modified without breaking its signature

e Can be used for privilege escalation (root device)
o modify APK signed with platform/oem key
o that APK roots any device from given OEM!

Mulliner and Oberheide, CSW 2014

MasterKey Bug cont.

e Actually multiple bugs

e Bugs in Java code (Dalvik bytecode)
o first priv esc vuln due to bug in Dalvik bytecode

e Bug present in AOSP until version 4.3
o Affected almost all Android devices at that time

Mulliner and Oberheide, CSW 2014

Patching MasterKey Bug(s)

e Patching Strategies
o Add missing return value check
o Add input/output sanitisation (thru proxy function)

e Fast turnaround
o 3 hours for initial version, coding + testing

Mulliner and Oberheide, CSW 2014

e Special version of PatchDroid
o Patches for MasterKey only!

e Released on July 16th 2013
o Available Google Play!

e ReKey your device
o http://rekey.io

Mulliner and Oberheide, CSW 2014

PatchDroid / ReKey - Demo

LRIt

Device Secured

Mulliner and Oberheide, CSW 2014

Data & Stats

e (Google Play

e ReKey opt-in

Mulliner and Oberheide, CSW 2014

ReKey Stats - installs

APP NAME PRICE CURRENT /TOTAL AVG. RATING /
INSTALLS TOTAL #
€) Rekey (for rooted phones) 1.0.6 Free 8.057 / 32,732 * 4.04 | 368

remember: we require a pre-rooted device

Mulliner and Oberheide, CSW 2014

ReKey Stats - Android versions

CURRENT INSTALLS BY DEVICE ON MAR 10, 2014

ALL APPS IN TOP 10 ANDROID VERSIONS FOR
YOUR APP TOOLS TOOLS
w " Android 4.1 5666 33.09% 29.07% Android 4.1 29.07%
¢ W Android 2.3.3-2.3.7 1300 16.25% 22.66% Android 2.3.3-2.3.7 22.66%
2+ 1 Android 4.2 1909 16.25% 11.92% Android 4.0.3 - 4.0.4 14.04%
() @ Android 4.0.3-4.0.4 1137 14.11% 14.04% Android 4.3 13.59%
- M Android 4.3 762 9.46% 13.59% Android 4.2 11.92%
) M Android 4.4 — 4.21% Android 4.4 4.21%
- M Android 2.2 50 s 3.46% Android 2.2 i
) ' Android 2.1 o 0.52% 0.33% Androld 3.2 0.46%
(1 ' Android 3.2 6 0.07% 0.46% Android 2.1 0.33%
(] W Android 3.1 1 0.04% 0-14% Android 3.1 0.14%
M others 5 0.06%

Mulliner and Oberheide, CSW 2014

ReKey Stats - Devices

CURRENT INSTALLS BY DEVICE ON MAR 10, 2014

YOUR APP

2+ | Hisense New Androm... 557 6.91%
2 B samsung Galaxy S2 (... 547 6.74%
< ! samsung Galaxy S3 (... 497 5.42%
1 @ Google Nexus 7 (grou... 166 2.06%
1 I Google Nexus 4 (mako) 158 1.96%
) I HTC Desire (bravo) 147 1.82%
] M samsung Galaxy S (G... 145 1.80%
@ Samsung Galaxy Note... 125 1.55%
] ' samsung Galaxy $4 (... 116 1.44%
] M samsung Galaxy Nex... 103 1.28%

B Others 5,560 69.01%

Mulliner and Oberheide, CSW 2014

ReKey opt-in data

e /klogs

e 942 unique device models

e Android versions
o 151t04.4.2

Mulliner and Oberheide, CSW 2014

Lessons Learned

“‘My ZTE Score M, is badly hacked and
your software detected it, after | found
obvious examples (all of which I video-

taped). Help please if possible? Thank
you.”

STAHP.

Conclusions

e Android security is fucked
e More public pressure on the responsible parties
e Top-down from Google
e Bottom-up from users and companies
e Open up platform security to third-parties?
e Allow enterprises, third-parties to offload patching
responsibility
e Better platform security in general, less vulns to patch

Mulliner and Oberheide, CSW 2014

What’s Next?

e PatchDroid / ReKey

o basically working but still a PoC

e Add patches for vendor specific bugs!?
o that's a lot of bugs

e Open Source it?
o X-Ray probes are woefully out of date
o Exynos, Webkit, MasterKey, etc
o Interest in open source version for
community development and new probes?

Mulliner and Oberheide, CSW 2014

nttp://x-ray.io
nttp://rekey.io

nttp://patchdroid.com
detailed academic paper

twitter:

Mulliner and Oberheide, CSW 2014

http://x-ray.io
http://x-ray.io
http://rekey.io
http://rekey.io
http://patchdroid.com
http://patchdroid.com

Thanks & Greetz

e mudge
o DARPA $%$%

e Joshua ‘jduck’ Drake
o heavy PatchDroid testing

o Greetz
o zach, ben, van Hauser, iOnic, AHH crew

Mulliner and Oberheide, CSW 2014

Alternative ‘Hotpatching’ Tools

e Xposed framework
o made for modding Android without reflashing FW
o replaces zygote

e Cydia Substrate

o mode for modding Android without reflashing FW
o complex

Mulliner and Oberheide, CSW 2014

