
POSTER: Towards Detecting DMA Malware

[Extended Abstract]

Patrick Stewin, Jean-Pierre Seifert, and Collin Mulliner
Security in Telecommunications, Technische Universität Berlin & Deutsche Telekom Laboratories

Ernst-Reuter-Platz 7
10587 Berlin, Germany

patrickx,jpseifert,collin@sec.t-labs.tu-berlin.de

ABSTRACT
Malware residing in dedicated isolated hardware containing
an auxiliary processor such as present in network, video, and
CPU chipsets is an emerging security threat. To attack the
host system, this kind of malware uses the direct memory
access (DMA) functionality. By utilizing DMA, the host
system can be fully compromised bypassing any kind of ker-
nel level protection. Traditional anti-virus software is not
capable to detect this kind of malware since the auxiliary
systems are completely isolated from the host CPU. In this
work we present our novel method that is capable of de-
tecting this kind of malware. To understand the properties
of such malware we evaluated a prototype that attacks the
host via DMA. Our prototype is executed in the chipset of
an x86 architecture. We identified key properties of such
malware that are crucial for our detection method. Our de-
tection mechanism is based on monitoring the side effects of
rogue DMA usage performed by the malware. We believe
that our detection mechanism is general and the first step in
the detection of malware in dedicated isolated hardware.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—in-
vasive software

General Terms
Security

Keywords
Dedicated Hardware; Intel Active Management Technology
(iAMT); Manageability Engine (ME); Northbridge; Rootkit

1. DMA MALWARE
Rootkits are the most prominent type of malicious soft-

ware today. The ongoing battle between malware authors
and the anti-malware community forced malware creators
to move to dedicated isolated hardware, or more precisely,
to auxiliary processors present in today’s x86 computer sys-
tems. Auxiliary CPUs are components present in hardware
such as the network interface card (NIC), the video card,
and the actual x86 chipset, for example, in the memory con-
troller hub (MCH).

Copyright is held by the author/owner(s).
CCS’11, October 17–21, 2011, Chicago, Illinois, USA.
ACM 978-1-4503-0948-6/11/10.

x86 Platformx86 Platform

Video CardVideo Card
GPU

Memory

Main MemoryMain Memory

M
em

o
ry

 C
o

n
tr

o
lle

r
M

e
m

o
ry

 C
o

n
tr

o
ll

er

 DMA

µControllerµController
Processor
Memory

NICNIC
Processor
Memory

DMA

DMA

CPUCPU

000110100010011
111001011010011
000110100010011
111001011010011
000110100010011
111001011010011
000110100010011
111001011010011
000110100010011
111001011010011

Figure 1: Overview of Dedicated Isolated Hardware
potentially exploitable by Rootkits

Hardware based malware running in a NIC was shown
in [1]. Efforts were started to prove the feasibility of such
malware in video cards (using Graphics Processing Units,
GPU) [2]. The first attacks were already presented in [8].

All these devices support Direct Memory Access (DMA),
which enables this kind of malware to attack the host plat-
form. The use of DMA circumvents all known protection
mechanisms build into the operating system (OS) kernels
and thus presents a very serious threat. Furthermore, mal-
ware resident on dedicated isolated systems can survive re-
boots and even the power off state.

Since DMA usage is a key property of malware executed in
isolated hardware (see Figure 1), we call this DMA malware.
The execution environment of DMA malware is unaccessible
from the host platform’s CPU. Anti-virus software therefore
is unable to detect and disable it. To the best of our knowl-
edge no previous work has presented mechanisms to detect
malware resident in dedicated isolated hardware.

In this work we present a novel approach for detecting
DMA malware. Our approach is based on DMA side effects
that we observed during the evaluation of our own DMA
malware prototype.

We developed a prototype DMA malware to resemble rep-
resentative functionality used by other previously developed
DMA malware. Our specific implementation targets the
auxiliary processor that is part of the platform’s memory
MCH included in current x86 architecture chipsets.

So far we developed, implemented, and evaluated our mech-
anism that is able to detect rogue DMA usage that is not
initiated by the host system. Our method is able to detect a
general side effect pattern and thus we believe it is suited to

857

detect other kinds of DMA malware besides the prototype
we implemented.

The main contributions of this work are:

• Novel Detection Mechanism: We present a novel
detection mechanisms to reveal DMA malware executed
in isolated hardware environments. Our work shows
that DMA malware produces surprising side effects that
we measure reliably utilizing widely used and cross plat-
form available CPU features.

• DMA Malware Evaluation: To fully understand
DMA malware we evaluated a realistic and representa-
tive prototype in form of a fully functioning keystroke
logger that operates in the platform’s memory controller
hub. Our malware searches the host memory for key-
stroke codes and exfiltrates them via the network.

2. RELATED WORK
Our focus is on dedicated isolated hardware with a sep-

arate processor and separate memory as known from NICs
and video cards. An example of a stealth secure shell (SSH)
was shown by [7]. The shell is hidden using the NIC as well
as the GPU environment, that communicate via the Periph-
eral Component Interconnect (PCI) bus. The SSH daemon
is installed by reflashing the firmware. A defense mecha-
nism proposed by [7] is counting PCI-to-PCI transfers. Our
prototype malware does not communicate with other PCI
devices (i.e., counting PCI-to-PCI transfers is useless) and
does not require to reflash firmware.

In [1], Duflot et al. demonstrated how to exploit a host
during runtime by utilizing a NIC and DMA. The authors
concede that the internal memory of the NIC can be accessed
by the host. Their attack is not completely isolated from
the host, whereas our prototype malware is. The authors
propose countermeasures that will most probably result in
an arms-race. A detection mechanism was not proposed.

Another example for malware executed in a GPU was
shown in [8]. The execution of that malware is assisted by
the GPU, i.e., some parts are executed on the main CPU,
thus, they are not completely isolated from the host.

Executing arbitrary code in the Intel Active Management
Technology environment (see [4]), that means, in the plat-
form’s MCH, was demonstrated by [6]. The authors discov-
ered an exploit that they use to inject code into the iAMT
environment. Their proof-of-concept (PoC) code does noth-
ing except to reveal itself by writing to a hard coded address
in the main memory via DMA. The PoC has no malware
functionality and is therefore not suited for our evaluation.

The attack properties of our prototype are quite similar to
the presented related work. The attacks are based on DMA.
Hence, the detection mechanism based on DMA side effects
we present in this work is also able to detect DMA attacks
originating from other devices, such as NICs or GPUs.

3. OUR DMA MALWARE PROTOTYPE
To evaluate DMA malware we extended the implementa-

tion of our keystroke logger prototype presented in [5], that
is based on an exploit described in [6]. Our prototype is
executed in the isolated iAMT environment that is part of
every modern Intel x86 chipset. The logger uses DMA to
find the physical address of the keyboard buffer of a USB
keyboard that is connected to a Linux based platform. Af-

ter the keystroke logger has found the address the logger
monitors the buffer permanently and exfiltrates captured
keystroke codes to an external platform via an isolated net-
work channel.

We determined that DMA malware has the following com-
mon attack properties. An attack against the host consists
at least of two phases: (i) search system memory for valu-
able data such as the address of a kernel structure (search
phase), and (ii) read from (monitor phase) and/or write to
the found memory addresses. Even in the case where the at-
tacker wants to inject something into the host environment,
the attacker has to find the right address such as of a cer-
tain kernel data structure in the host memory (see [1]). The
search phase cannot be avoided.

For our prototype we chose a read only DMA attack to
implement more stealthy DMA malware. We implemented
a fully functioning keystroke logger for USB keyboards. Our
prototype DMA malware implements exactly the above men-
tioned attack properties. We think that these are common
for all DMA malware. Hence, our prototype is representa-
tive DMA malware.

We could have implemented another prototype, that ex-
tracts cryptographic keys from the systems memory. Such a
prototype would also implement the search and the monitor
phase, even if the latter is quite short. The important point
is to create a realistic attack that we can analyze.

4. DETECTING DMA SIDE EFFECTS
Our investigation into detecting malicious DMA usage is

based on the knowledge that both, the main CPU and the
iAMT environment, can access the main system memory at
the same time. The interesting question for us was if this
parallel memory access is with or without side effects. If side
effects are present and measurable then we can use these to
detect malicious behavior.

We booted a Linux kernel and started only a root shell
to ensure that the system workload was as little as pos-
sible. We performed a memory stress three times: without
keystroke logger (baseline), keystroke logger in search mode,
and keystroke logger in monitor mode. For the tests we used
a 100 MB file that we copied from one location to another
within a RAM based file system. We repeated the tests 1,000
times and calculated the means. The results are depicted in
Figure 2. The diagram shows how we refined our strategy
with different more specialized measurement tools.

GNU time: First we tried the common system tool GNU
time to determine a delay. GNU time measures system re-
source usages of a process, in our case the memory stress test
tool. As shown in Figure 2 on the left hand side the means
of the test runs are nearly the same. We concluded that
the measurement resolution of GNU time is not sufficient to
reveal delays in our experiment.

Time Stamp Counter (TSC): We repeated our mea-
surements with a more accurate hardware based measure-
ment tool, the TSC (cf. [3], Vol. 3A 16-49). The TSC counts
clock ticks. The results are shown in the middle in Figure 2.
We were able to (re)produce an overhead of 2% when our
prototype malware is in search mode. DMA was originally
introduced to disburden the CPU. That means, to perform
memory transfers without the involvement of the host CPU.
Hence, that overhead is surprising and a first piece of evi-
dence that detectable DMA side effects exists. When our
prototype malware is in monitor mode we cannot see note-

858

GNU time TSC HPC

baseline
search mode (bulk transfer)
monitor mode (4 bytes transfer)

...0

1

2

Figure 2: Memory Stress Measurements: Search/
Monitor Phase are shown relative to the Baseline

worthy overhead when using TSC. The critical difference
between the two modes is that in search mode our malware
copies at least a memory page where it searches for valuable
data, but in monitor mode the malware copies just 4 bytes
from the keyboard buffer.

Hardware Performance Counter (HPC): We repeated
the measurements with a third approach using HPCs, a
monitoring tool for code optimization. The counters are spe-
cial processor registers on Intel processors (see [3], Vol. 3B
30) that count certain events such as cache misses, branch
prediction misses, and resource stalls. Similar HPC are also
available on other platforms such as ARM and SPARC. The
Intel platform we used for our experiments supports 340
events.1 We evaluated all of them and determined that es-
pecially resource stalls are a DMA side effect. HPC events
are more precise than TSC measurements. We assume the
counted resource stalls are a direct result of the delays we
can measure with TSC. Exemplarily, we show the result of a
HPC called RAT_STALLS:ROB_READ_PORT in Figure 2. Com-
pared to the baseline the overhead is more than twice as
much. Without our prototype malware the mean of our mea-
surements was 1,359,898 counted events. With our proto-
type in search mode the mean was 3,161,868 counted events,
and in monitor mode it was 1,535,054 counted events. The
latter is slightly higher compared to the baseline. The re-
fined measurements show the more accurate we measure the
better is the visibility of the DMA side effect.

Detection: Based on our findings, DMA side effects can
be reliably measured. This means we can design a DMA
malware detection mechanism. The mechanism works by
establishing a measurement baseline, reference values for
the TSC/HPC. During runtime, our system monitors the
TSC/HPC values and compares them to the reference val-
ues. If the values deviate from the reference values malware
is detected. As this research is work in progress we acknowl-
edge that an implementation needs some more work.

5. CONCLUSION AND FUTURE WORK
Malware executed in isolated hardware is an emerging

threat. This type of malware is mostly based on accessing

1We used the Performance API, that is available at http://
icl.cs.utk.edu/papi/software/index.html, to work with
HPC.

the host memory via DMA. In this work we aim to detect
this type of malware. We first developed a malware proto-
type for the iAMT environment. The iAMT environment is
part of every modern Intel x86 chipset. Our malware is a
fully working keystroke logger that exfiltrates the captured
keystrokes via the network. Through the development of
our malware as well as through the analysis of existing mal-
ware we determined key properties of DMA based malware.
The most interesting property is the required bulk DMA
transfers to search the memory for valuable data to carry
out attacks. Our detection method is based on the sur-
prising observation that parallel memory accesses from the
isolated hardware (via DMA) and the main CPU produce
measurable side effects. Our work is still in progress, but
we are convinced that our approach is applicable to other
DMA based malware executed in similar isolated hardware
environments such as NICs and video cards.

6. ACKNOWLEDGMENTS
The authors would like to thank Benjamin Michéle, Dmitry

Nedospasov, Juliane Krämer, Matthias Lange, and Steffen
Liebergeld for their help and support in this work.

7. REFERENCES
[1] L. Duflot, Y.-A. Perez, G. Valadon, and O. Levillain.

Can you still trust your network card?, Mar. 2010.
[Online:] http://www.ssi.gouv.fr/IMG/pdf/csw-
trustnetworkcard.pdf.

[2] G. Hoglund. video card rootkit feasibility study, Mar.
2010. [Online:] HBGary Email Viewer:
http://leaks.anonamegame.com/greg hbgary
com/14960.html.

[3] Intel Corporation. Intel 64 and IA-32 Architectures
Software Developer’s Manual Volume 3 (3A
& 3B): System Programming Guide, Apr. 2011. [Online]:
http://www.intel.com/Assets/PDF/manual/325384.pdf.

[4] A. Kumar, P. Goel, and Y. Saint-Hilaire. Active
Platform Management Demystified. Richard Bowles,
2009. Intel Press.

[5] P. Stewin and J.-P. Seifert. ”In God We Trust All
Others We Monitor” - [Extended Abstract]. In CCS
’10: Proceedings of the 17th ACM Conference on
Computer and Communications Security, pages
p.639–641, New York, NY, USA, October 2010. ACM.

[6] A. Tereshkin and R. Wojtczuk. Introducing Ring -3
Rootkits. Black Hat USA, July 2009. [Online]:
http://www.blackhat.com/presentations/bh-usa-
09/TERESHKIN/BHUSA09-Tereshkin-Ring3Rootkit-
SLIDES.pdf.

[7] A. Triulzi. Project Maux Mk.II, Nov. 2008. [Online]:
http://www.alchemistowl.org/arrigo/Papers/Arrigo-
Triulzi-PACSEC08-Project-Maux-II.pdf.

[8] G. Vasiliadis, M. Polychronakis, and S. Ioannidis.
GPU-Assisted Malware. In Malicious and Unwanted
Software (MALWARE), 2010 5th International
Conference on, pages 1 –6, oct. 2010.

859

