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Abstract—Malicious injection of cellular signaling traffic from
mobile phones is an emerging security issue. The respective
attacks can be performed by hijacked smartphones and by
malware resident on mobile phones. Until today there are no
protection mechanisms in place to prevent signaling based
attacks other than implementing expensive additions to the
cellular core network. In this work we present a protection
system that resides on the mobile phone. Our solution works
by partitioning the phone software stack into the application
operating system and the communication partition. The
application system is a standard fully featured Android system.
On the other side, communication to the cellular network is
mediated by a flexible monitoring and enforcement system
running on the communication partition. We implemented
and evaluated our protection system on a real smartphone.
Our evaluation shows that it can mitigate all currently known
signaling based attacks and in addition can protect users from

cellular Trojans.
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I. INTRODUCTION

In the past years a lot of effort has gone into securing

smartphones. There are academic contributions [20], [8], [35]

and work performed by smartphone operating system (OS)

vendors such as Apple, Google, Symbian, RIM or Microsoft.

However, the efforts concentrated on the OS, to protect users

from attacks and to mitigate malware such as Trojans.

Despite recent attacks, which target the cellular core net-

work, few methods of defense are known. These attacks

are based on hijacked mobile phones (mobile botnets) that

produce signaling traffic sent from mobile phones to the

cellular network core conducting Denial-of-Service attacks.

These attacks demonstrated that current security improvements

seek to protect the actual device and not the environment in

which they operate, namely, the cellular core network.

Related security and reliability problems are caused by

rooted (fully user controlled) smartphones. The problem is that

rooting disables protection mechanisms of the OS, allowing

the user to install arbitrary applications to his device. Such

applications might leverage extended access privileges and

may use them for intentional malicious activity and accidental

harmful operations.

In this paper we present our novel solution for protecting the

cellular network infrastructure from malicious smartphones.

Our protection system is called the virtual modem. It secures

the baseband, the entity that communicates with the cellular

network. To the best of our knowledge nobody has yet

attempted this path for securing cellular communication.

In contrast to a network side solution our protection system

is designed to run on the mobile phone. Changes to the cellular

network equipment are very expensive, and time consuming

which would result in a slow adoption of any newly proposed

protection mechanism. On the other hand, smartphone devel-

opment cycles are very short. New smartphones are brought

to the market every 6 months. Thus, we believe a device-

side protection system has a significantly higher chance to be

adopted.

Instead of implementing our protection system directly

on the cellular connectivity hardware, we achieve protection

by controlling the communication channel between the

OS and the baseband. The smartphone is partitioned and

the OS is separated from the baseband. The separation is

implemented through virtualization. The actual core of our

protection system is comprised of an AT command filter.

With the implementation of our protection system based on

the Android [10] platform we show that our approach is

feasible for real-world smartphones. Still we think its design

is general enough to be used for other smartphone OSes as

well.

The main contributions of this paper are:

• Categorization of Signaling Issues: We categorize

different security and reliability issues that are caused

by signaling traffic related to smartphone use and abuse.

The issues can be separated into intentional actions

(attacks), and side effects that can be abused for attacks.

• Cellular Signaling Filter: We introduce a novel

mechanism to protect cellular network infrastructure

against overloading from smartphones. This is achieved

by filtering the signaling channel directly on the

smartphone. This avoids expensive changes on the

cellular core network. We further show that our novel

security mechanism can be used to protect the user from

Trojans that cause premium rate charges via SMS.

• Safe-to-root virtualized Android: We designed and

built a safe-to-root virtualized Android. Our virtualized



Android can be rooted and modified as the owner of the

device wishes. The device manufacturer together with

the operator retain full control over the cellular network

interface (the baseband) and thus can prevent the device

from being abused for launching attacks.

The rest of this paper is organized as follows. We first

provide some background information on smartphones and

cellular networks in Section II. In Section III we give a detailed

overview of the threats to both the network and the phone

owner that are related to the baseband of a modern smartphone.

The design of our protection system to mitigate these threats

is described in Section IV. Implementation details of our

prototype system are described in Section V. In Section VI,

we discuss our actual mitigation technique in great detail. The

evaluation of our protection system is presented in Section VII.

In Section VIII, we discuss related work before we conclude

and outline future work in Section IX.

II. BACKGROUND

In this section we provide the reader with background infor-

mation on cellular communication. First, we briefly introduce

the cellular network components and cellular signaling. These

are targeted by the attacks we describe later in Section III.

Second, we provide some details on the common hardware

design that is found in almost every modern smartphone today.

A. Cellular Network Architecture

The basic architecture of a cellular network is shown in

Figure 1. The architecture leans towards a GSM network but

is very similar to a 3G network at least for the scope of this

paper. The network consists of the Base Stations (BS), the

connected Base Station Controller (BSC) (not shown in the

figure), the Mobile Switching Center (MSC), the packet-data

infrastructure consisting of the Serving GPRS Support Node

(SGSN), the Gateway GPRS Support Node (GGSN), and the

central user database the Home Location Register (HLR). The

HLR keeps track of all users and their accounting information.
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Figure 1. Basic setup of a cellular network.

B. Cellular Signaling

Signaling traffic generated by the Mobile Equipment (ME)

is sent to the MSC and HLR in case of voice calls, SMS,

and updating account settings (such as call-forwarding).

Packet-data related signaling is mainly directed towards the

SGSN, the GGSN, and of course the HLR.

Packet Data Protocol (PDP) setup in order to establish IP

connectivity is a complex process. When a ME wishes to

establish a PDP context it sends a GPRS-attach message to

the SGSN. The SGSN authenticates the ME using the HLR.

Next, the PDP context is established and stored at the SGSN

and GGSN. This includes records and parameters for billing,

quality of service information, and the IP address assigned

to the specific PDP context. Maintenance and distribution

of the PDP context information across the different network

components is a costly process as it involves many components

across the cellular network.

C. Smartphone Architecture

Modern smartphones consist of two individual subsystems,

the application processor and the baseband processor. Together

with the peripheral hardware such as the touch screen, audio

input and output, and the GPS receiver these two systems form

the actual smartphone. Figure 2 depicts the conceptual system

design of a smartphone. This is how an iPhone, Android, and

Windows Phone 7 device looks on the inside.
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Figure 2. The basic design of a modern smartphone.

The application processor usually comes in form of a

System on a Chip (SoC) design. The CPU and many of the

controllers for connected peripherals shown in Figure 2 are

included on the same chip. The application processor runs the

smartphone OS such as Android or iOS and all the applications

(e.g. email client, telephone).

The baseband processor is the communication interface to

the cellular network. It consists of a general purpose CPU,

a Digital Signal Processor (DSP), and the necessary radio

components such as a signal amplifier. The baseband proces-

sor runs a specialized real-time operating system. Baseband

chipsets are a highly specialized field since they have to be

certified by multiple institutions before they are allowed to

operate on public cellular networks. Because the process of

development and certification is very costly, there are few

baseband manufacturers [27].

The application processor and the baseband processor are

connected at few points. This allows for better flexibility



for the various phone manufacturers. The connections are

for digital audio input and output (voice calls) and for con-

trolling the baseband’s functionality. The control channel is

conceptually a serial connection that can be implemented using

buses such as SPI or USB. Over this serial connection, the

application processor uses an extended version of the Hayes

Attention (AT) command set1 to interact with the baseband.

In Section VI-D we will explain the communication between

application processor and baseband in more detail.

III. THREATS

In this section we introduce the different classes of threats

that we address with the protection system presented in this

work. There are three basic classes: threats that hijacked smart-

phones pose to the cellular core network, malware residing

on the smartphone – with and without system privileges, and

rooted devices.

A. Hijacked Phones and Mobile Botnets

The threats that hijacked phones and mobile botnets pose

to the cellular network infrastructure and mobile customers is

an emerging trend. A good example is the ikee.B [24] iPhone

botnet. The bot infected about 22,000 devices and contained

a HTTP-based Command and Control system.

Traynor et al. show in [30] that smartphone-based bot-

nets can pose a serious threat to the cellular core network.

They demonstrated that mobile botnets can overload backend

systems such as the HLR and thus bring down the cellular

network itself. Their attack is based on AT commands issued

by zombie phones, which cause a high load on the HLR.

Specifically, they issue the AT command to configure and

enable call-forwarding settings. We discuss the actual details

of the attack in Section VII where we evaluate our protection

system against the various attacks.

The second issue with mobile botnets is their use of SMS

messages for their Command and Control (C&C) communica-

tion, as demonstrated by Mulliner et al. in [19]. Their proof-

of-concept bot uses SMS messages for delivering the C&C

messages between the nodes of the botnet. A similar proof-

of-concept SMS controlled botnet was created in [33].

The SMS messages must be blocked to prevent botnet

communication and to ensure that the subscriber (owner) does

not incur any additional charges related to the increased SMS

traffic.

B. PDP Context Change

Fast PDP context activation and de-activation leads to high

network load on the GGSN and SGSN infrastructure. This is

performed by either malicious applications or badly config-

ured mobile phones. This is possible because on smartphone

platforms such as Android any application has access to the

network configuration and thus is able to change the packet-

data settings.

On Android it is possible to force an PDP context change

every 2 seconds. This will result in roughly 43,200 PDP

1http://en.wikipedia.org/wiki/Hayes command set

activations per day (24 hours). A rogue application can easily

carry out a Denial-of-Service attack against an operator’s

packet-data infrastructure, if it is installed on enough devices.

The GSM Association (GSMA) points out a similar prob-

lem [11] through the use of pre-paid SIM cards. Travelers

who do not want to pay high roaming costs often buy pre-

paid SIM cards. A flood of PDP context activation attempts

can occur under two conditions: First, the pre-paid SIM card

does not match the configured packet-data settings (the one

of the home operator), but the phone keeps trying to activate

packet-data every few seconds. Second, the pre-paid account

is below the number of credits that are required to establish a

PDP context. In both cases the PDP context creation is rejected

by the network, but for the phone it looks like a technical error,

and thus it repeatedly attempts to reconnect to the network.

C. Premium Rate SMS Trojans

Fraud caused by SMS Trojans such as FakePlayer-A [9]

is a long standing problem in the mobile phone world costing

consumers a considerable amount of money every year [21].

This kind of fraud is possible since on modern smartphones

any application has access to the cellular API and is therefore

able to send SMS messages. The same problem applies to

voice calls to premium numbers.

Smartphone platforms such as Android or Symbian imple-

ment mandatory access control to restrict arbitrary access to

system resources such as location, Internet, or cellular access.

These permissions are hard coded into the application. At

installation time of an application the user is shown a list of

required permissions. The user can accept these or cancel the

installation process. It is not possible to selectively accept or

deny access privileges. Thus, many users simply accept such

permission requests without considering their implications.

For example, on Android the permission required to send

SMS messages is called android.permission.SEND SMS.

D. Rooted Phones

Rooted or jailbroken smartphones are a serious security

risk. Once a device is rooted, many security features of

the operating system, such as network and cellular access

restrictions as well as data-caging, are gone. Thus, the entry

barrier for malware such as Trojans or botnets is much lower

on rooted phones.

Rooting can happen in two ways. First, voluntarily by the

owner who wants to be able to install additional, potentially

unauthorized, applications. This type of rooting is often done

by simply installing a modified firmware on the device. Thus,

no security flaws are actually exploited.

Second, by malware such as DroidDream [17] in order to

gain maximum privileges on the infected system. This type of

rooting is achieved by exploiting known security flaws in the

respective smartphone OS.

IV. DESIGN

Our aim is to mitigate Denial-of-Service attacks based

on signaling traffic sent from mobile phones. As described



in Section II-C the baseband is a phone’s gateway to

the cellular network. Consequently, our protection system

must have exclusive control over the baseband hardware.

For clarification, we define the following criteria for our

protection system.

Integrity Our protection infrastructure must withstand attacks

from the smartphone OS. Even a rooted phone must not be

able to directly tamper with the baseband. This can only be

achieved, if our protection system is spatially isolated from

the smartphone OS, e.g. it must not depend on its correct

operation.

Completeness All cellular network access must be mediated

and controlled by our trustworthy components.

Universality Our solution must be applicable to all cellular

networks without requiring modifications to the operator’s

equipment.

Portability Our solution shall be usable on commercial off-

the-shelf smartphones. It must not require additional hardware

or hardware modifications. Our system has to support different

baseband chips as well as popular smartphone CPUs. The

solution must not depend on a certain smartphone OS.

However, for practical reasons (open source, popularity) we

chose the Android OS for this work.

Security Our protection system must not pose additional

threats to the smartphone OS. This criterion is similar to

the integrity criterion, but also includes availability and

confidentiality of the whole system.

Upgrades and modifications to the cellular operator’s equip-

ment are very expensive and take a lot of time. In contrast, the

smartphone market is advancing rapidly, with frequent releases

of new smartphone generations. Each smartphone generation

might bring new issues that would require new measures on

the operator’s side. We opted for a solution that addresses the

signaling problem directly at its root, the smartphone itself

(Universality Criterion).

A reasonable place for our protection system is the baseband

as this is the smartphone’s gateway to the cellular network

(Completeness Criterion). The baseband processor has its

own memory and is physically isolated from the application

processor (Integrity Criterion and Security Criterion).

Baseband chipsets are under tight control by their manu-

facturers. Hardware details and the software stack are kept as

trade secrets. Thus, no SDK or developer documentation is

available. The Portability Criterion requires us to implement

our protection system on commonly used basebands, which

could turn out to be inherently difficult as the basebands

might vary vastly. Also, a modified baseband would probably

require re-certification, which due to time and cost constraints

is infeasible.

Instead we chose to build our protection system on the

application processor. The Completeness Criterion requires

that the smartphone OS cannot directly access the baseband

hardware. All cellular network access needs to be mediated

by a custom proxy component. We call this component the

virtual modem. The virtual modem runs as a separate task.

We ensure spatial isolation between the smartphone OS, in

our case Android, and the virtual modem by running Android

in a virtual machine (VM). Figure 3 shows this setup. Direct

hardware access of the Android VM to the baseband is denied.

Instead we present the Android VM with an interface to the

virtual modem. This ensures that even in the event of a rooted

Android, the network operator cannot be adversely affected.

For all other hardware, e.g. wireless LAN and graphics, we

allow the VM exclusive access to the underlying hardware

interfaces. We assume that the device’s DMA feature can be

restricted to safe memory locations2
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Figure 3. The architecture of our protection system. All interaction with
the baseband is mediated by the virtual modem. Android runs inside its own
virtual machine.

A. Micro Kernel as Secure Foundation

In contrast to a monolithic kernel such as Linux a micro

kernel merely implements essential mechanisms. This dramat-

ically reduces the complexity of the kernel. Components such

as device drivers or protocol stacks are implemented as user-

level tasks [16]. Isolation between user-level tasks is enforced

with address spaces. All communication between tasks is done

via efficient explicit kernel-mediated inter-process communi-

cation (IPC).

Modern third-generation micro kernels implement object-

capabilities. This access control scheme makes it possible to

build systems that implement the principle of least authority

(POLA). POLA states that each component is equipped with

the minimum set of permissions necessary to fulfill its task.

The micro kernel ensures spatial and temporal isolation of

its user-level tasks. It guarantees safe object access via object-

capabilities. This ensures the Integrity Criterion.

2Technology such as IO-MMUs is already available in personal computers.
Similar technology is likely to be implemented in future smartphone CPUs.



B. Virtualized Android

As outlined in the previous section the micro kernel par-

titions the system in a secure way. The partition running

Android is implemented as a virtual machine.

Virtualization requires the Android OS to run with less

privileges than the micro kernel. On the other hand, the

Android kernel expects to have exclusive control of the hard-

ware. Unfortunately, today’s smartphone CPUs are not natively

virtualizable, which prevents virtualization in the form of trap

and emulate [23].

Fortunately, it is possible to run monolithic OS kernels such

as Linux as a user-level task on top of a micro kernel. Härtig

et al. [12] showed that the overhead of running a monolithic

OS on top of a micro kernel is between 5 and 10 percent. We

believe that this is acceptable on modern smartphones, given

the merits it brings in terms of security.

In our setup the Android kernel is modified to run as an

application on top of the micro kernel. As such, it can only

access memory pages that we present it with. By granting

a predefined set of IO memory pages, we can restrict the

hardware that the Android kernel can access. We enforce that

Android cannot directly access the baseband by not giving it

access to the baseband’s IO memory. Instead, we present it

with an interface to our virtual modem. This ensures that all

cellular communication is mediated by our protection system

(Completeness Criterion).

Whereas we slightly modify the Android kernel, its user-

level software stack remains unmodified. We designed the

Android VM to be safe-to-root, be it voluntarily by the user,

or by malware. If the user wants to flash his device, he

is free to exchange the content of the Android partition.

A commercial version of our protection system requires a

bootloader that is capable of restricting updates to the Android

partition. Required adjustments of currently used bootloaders

are minimal.

C. Virtual Modem

The virtual modem is the only software that is allowed

direct access to the baseband hardware. As such, it mediates

all cellular network access of Android. It consists of the

following components.

Baseband Driver The baseband driver contains all the logic

needed to communicate with the baseband hardware. The

actual implementation is specific to the device, and often

contains numerous dependencies such as drivers for I2C or

SPI buses. The baseband driver also contains the logic to

tunnel IP data packets through the cellular data network.

Virtual Serial Interface Our virtual modem provides its

client (the virtualized Android) with a virtual serial interface

for sending and receiving the AT command stream.

AT Command Filter All AT commands are mediated and

filtered by our AT command filter. The AT command filter

is the central component that enforces our policies on the

baseband. It will be explained in detail in Section VI.

Virtual Network Interface Once a data connection is

established, all data packets are transfered between the

baseband driver and Android via a virtual network interface.

IP Filter The virtual modem includes the infrastructure for

network address translation (NAT).

V. IMPLEMENTATION

We built our prototype around an Intel x86-based smart-

phone. However, the design described in Section IV applies

equally well to the widely used ARM architecture.

We picked the Fiasco.OC [32] micro kernel as the founda-

tion of our system. Fiasco.OC is a modern third-generation mi-

cro kernel, which provides the features outlined in Section IV.

A. Hardware

We developed our prototype on an Aava [4] development

phone. The phone hardware is built around the Intel Moores-

town [13] platform. It consists of a SoC that contains a

graphics accelerator (GPU) and a low voltage Atom core. The

Atom CPU is clocked at 1.5Ghz and supports hyperthreading.

The board is equipped with 512MB RAM. For debugging

purposes a UART is connected via SPI. The phone contains a

ST-Ericsson U300 series baseband.

A picture of one of our development phones is included in

the Appendix.

B. L4Android

The L4Android project [15] is based on L4Linux [31], a

version of Linux that was ported from the machine interface

to the micro kernel interface of Fiasco.OC. In addition to

L4Linux, which is derived from the mainline Linux kernel,

L4Android incorporates Google’s Linux kernel modifications

to support the Android software stack.

L4Android runs as an application in its own address space

on top of the micro kernel. Each of the Android processes

runs in its own address space and benefits of the same

isolation capabilities as on the stock Android kernel. As the

L4Android kernel ABI is compatible with Android, we can

run all Android applications without modifications, even those

containing native code.

L4Android supports the Android user-level software stack

in versions 2.1 (Eclair) up to 2.3 (Gingerbread) and enables us

to even run multiple instances of Android in parallel on one

device.

C. System Setup

Our setup is depicted in Figure 4. It is made up of two

logical partitions: The Android VM and the virtual modem

partition. The former runs the L4Android kernel and the

Android user-level software stack (including applications).

The virtual modem partition consists of a L4Linux instance,

the Forwarder and our AT command filter. We grant L4Linux

exclusive access to the baseband. This has the benefit of

allowing the use of the vendor supplied native Linux driver,

and we do not need to implement our own one.
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Figure 4. Our implementation consists of two components running on the
Fiasco.OC micro kernel, the L4Android running the Android software stack
and the virtual modem. The virtual modem is composed of three parts, the
AT command filter, a Linux kernel that contains drivers and the Forwarder.

L4Linux is responsible for:

• Booting and initializing the baseband. This potentially

includes loading a firmware to the baseband.

• Running the baseband driver. This includes the driver

for the serial line that connects the baseband to the

application CPU, and all the logic needed to demultiplex

the serial stream into data packets and commands.

Furthermore, it implements the protocol stacks needed

to tunnel IP packets over the cellular network.

L4Linux implements advanced functionality such as IP

filtering or Network Address Translation (NAT). It does not

present a user interface as it does not require user interaction.

Communication between Android and the virtual modem

partition is established via two channels. One is the virtual

serial line to transmit the AT command stream. It is proxied

by the AT command filter to implement the filtering. The other

channel is the virtual network for IP-based data connections.

Virtual Serial Device The virtual serial device is used for

all baseband commands. Both the L4Android and L4Linux

kernel contain a custom driver that presents a serial device

to applications. The custom driver establishes a virtual

bidirectional serial line and sends all data via IPC.

Virtual Network Interface For data connections, we employ

a shared memory based virtual Ethernet driver. Packets are

written into a shared memory region, and the receiver is

notified of incoming packets via IPC.

The L4Linux instance in the virtual modem partition for-

wards data received on the virtual devices to the corresponding

physical device and vice versa. For the serial devices this task

is performed by the Forwarder, which is implemented as a

Linux application. It routes commands between the virtual

serial line and the serial control channel of the baseband.

In addition, the Forwarder parses the PDP context activation

reply from the baseband (see Figure 5), extracts the parameters

and applies them to the network interface presented by the

baseband driver. The original values are replaced with the

parameters necessary to configure the virtual network interface

in the Android partition.

The forwarding of IP packets between the virtual network

interface and the one provided by the baseband driver is

performed using the Linux netfilter infrastructure. We setup

a simple IP masquerading rule, but more advanced firewall

rules can be added.

D. Modifications to the Android RIL

The Radio Interface Layer (RIL) daemon in Android ab-

stracts details of the baseband implementation for upper

layers in the Android stack. This includes voice calls, SMS

messages, creation of PDP contexts, and configuration of

the baseband. Specifics of the baseband are implemented

by the baseband manufacturers in separate libraries, such as

libreference-ril.so. The libraries are loaded by the

RIL daemon to access the baseband functionality. Each vendor

has to develop such a library when adopting Android to a new

baseband.

From Android’s perspective our virtual modem behaves like

a specific baseband implementation. Consequently we built

our own abstraction library (libsect-ril.so) for the RIL

daemon. The rest of the Android user-level software stack

remains unmodified.

The Android RIL configures the network interface used

for data connections. As shown in Figure 5 the connection

parameters of a PDP context are transfered as XML. Our

library extracts these parameters and applies them to the virtual

network interface.

VI. THE AT COMMAND FILTER

The baseband takes care of all interaction between the

smartphone OS and the cellular network. The interface be-

tween the OS and the baseband is a serial character stream.

The serial stream carries commands (signaling) and data

(packet-data; IP packets). Voice is handled through other

interfaces. Our focus is the signaling. Signaling is done via

the GSM extensions to the AT command set as standardized

in [2].

The curious reader might also think about the so-called

GSM-codes that one can enter into a phone’s dialer applica-

tion (e.g. ##002# to clear call-forwarding settings). These

GSM-codes are part of the Man-Machine Interface (MMI)

standard [1] and are simply translated into AT commands by

the user-level phone dialer application.

In the rest of this section we first characterize the signaling

relevant AT commands and give some brief insights of our

specific baseband. Then we discuss special issues with filtering

AT commands and how we solved them. In the remaining

part of the section we present our implementation, how we

block commands, and how we profiled the AT commands to

determine the baseline for configuring our filter.



A. AT Command Characterization

We analyzed the AT communication to determine what

commands and command sequences are used to perform

critical operations such as changing call-forwarding or packet-

data settings. Below we briefly discuss the relevant commands.

AT+CGDCONT Configure a PDP context. This sets the

connection parameters such as the Access Point Name (APN),

user name and password, and other optional parameters. We

provide an example of this command later in this section.

AT+CGACT Activate a configured PDP context. However,

this standardized command, is not used on the ST-Ericsson

baseband that our hardware comes with. There, activation of

the PDP context works differently and is described below.

There are other commands to activate and de-activate a PDP

context, but these are not considered within the scope of this

work.

AT*EPPSD PDP context control for our ST-Ericsson

baseband. The command takes the PDP context index and

the new state (1 = up or 0 = down) as arguments. In the next

section we provide more details on the PDP context setup

and activation.

AT+CMGS Send an SMS message. The SMS message is

provided as hex encoded Protocol Data Unit (PDU). The

command below sends an SMS message in PDU mode, the

message consists of 17 bytes.

AT+CMGS=17

>

0001000c81101521436587000004d4f29c0e

ATD+4930835358585; Initiates a voice call to the given

number. The semicolon signals the baseband that the call is

actually a voice call. Without semicolon the baseband tries to

establish a data call.

AT+CCFC Configure, activate, and de-activate call-for-

warding settings. The command takes the type of call-

forwarding such as when busy or unreachable, and the des-

tination number as arguments. The example below sets call-

forwarding for the busy state to the given number.

AT+CCFC=1,1,"4915112345678",129,0

AT+CFUN Configuration of the baseband state. The most

common states are: Flight mode (stop all radio transmissions),

GSM only, 3G only, and GSM+3G (prefer 3G) mode. The

command below switches the baseband to Flight mode.

AT+CFUN=4

B. PDP Context Setup on the STE Baseband

First, the PDP context is configured using the standardized

command AT+CGDCONT. Activation is performed by the

custom AT*EPPSD command. The baseband replies with a

XML text block containing the IP address, subnet mask, MTU,

and DNS server IP addresses. Figure 5 shows an example of

the whole process including the context configuration.

AT+CGDCONT=1,"ip","internet.t-mobile","",0,0

OK

AT*EPPSD=1,1,1

<?xml version="1.0"?>

<connection_parameters>

<ip_address>10.165.132.86</ip_address>

<subnet_mask>255.255.255.255</subnet_mask>

<mtu>1500</mtu>

<dns_server>193.189.244.225</dns_server>

<dns_server>193.189.244.206</dns_server>

</connection_parameters>

OK

*EPSB

Figure 5. Configuration and activation of a PDP context on our ST-Ericsson
baseband hardware.

C. Special Problems

While analyzing the AT command interface and

experimenting with our device we identified some additional

issues with the AT commands.

Special case APN. Some operators have an additional APN

for MMS, therefore, one has to take care of additional

legal APN activate-deactivate sequences. Our implementation

includes additional checks which ensure that deliverability of

MMS messages is not restricted.

Command side effects. Certain AT commands have side

effects that need to be taken into account by our filter. We de-

termined that the baseband state switch command (AT+CFUN)

is such a case. If the baseband is switched between 2G and

3G the PDP context is disconnected and reconnected.

D. Filtering AT Commands

As shown in Figure 3 and 4, the AT command filter

sits between the Android user-level telephony stack and the

baseband.

The filter parses commands issued by the RIL (the RIL dae-

mon runs in the Android partition) and enforces the configured

filter rules. Commands that are not relevant are forwarded to

the baseband without applying any parsing. Results are passed

back to the RIL.

We implemented filters for all commands we discussed ear-

lier in Section VI-A. These are: packet-data configuration and

activation (AT+CGDMNT and AT*EPPSD), call-forwarding

(AT+CCFC), modem control (AT+CFUN), SMS (AT+CMGS),

and calls (ATD). The filter works as an intelligent rate limiter.



It counts how often a command is issued within a period of

time (the interval). If the count reaches the threshold all further

commands issued within the interval are blocked. The rule

below will allow issuing 5 AT+CCFC commands within 60

seconds.

AT_CCFC_interval = 60 (seconds)

AT_CCFC_threshold = 5 (# commands)

Certain commands have to be combined (see special issues

Section VI-C). The core logic of our filter is shown in Figure 6.

lastcmd

+

intervall

>=

 now

count

>=

threshold

Block

No

Yes Yes

lastcmd = now

count = 0
Forward

No

Figure 6. For the commands of interest we track each instance of a command
within the configured interval. If the configured threshold is reached the
command is blocked. When the interval expires the counter is reset.

E. SMS Filter

We implemented additional filters to inspect the PDU of

SMS messages [3] sent from Android to the virtual modem,

more closely. We implemented two features. First, a premium

rate number detector. Second, a binary payload detector.

The Short Code Detector inspects the destination number

of every SMS message that is sent. Premium rate numbers

are mostly implemented using so-called short codes, telephone

numbers as short as 4-6 digits. If a short code is detected and

short code blocking is activated the command is blocked.

Our prototype blocks all SMS messages sent to short

codes. To allow sending legit SMS to short codes we need to

complete the implementation of the secure GUI we describe

in the future work in Section IX-A.

The Binary Message Payload Detector inspects the header

and payload field of every SMS message that is sent through

the filter. It uses a simple heuristic to determine if the message

is binary. The heuristic checks one flag in the header and

checks if the message body mainly consists of non-printable

characters. The ratio of printable to non-printable can be

configured. It further checks for base64 encoding and flags

the message as binary if this is detected. If the message is

determined to be binary it will be subjected to the rate limiting

rule for binary SMS messages.

F. Blocking Commands

Commands are blocked by simply not forwarding them to

the baseband. To not confuse the application logic in the RIL

our filter issues an appropriate error message for each blocked

command. The error message is injected into the stream that

otherwise carries the responses from the baseband to the RIL.

Special commands are never blocked due to various reasons.

These are:

Switch to flight mode (AT+CFUN=4). This is necessary since

flight mode is a required functionality that must always work.

Even if the threshold for the CFUN command is reached a

switch to flight mode is always permitted. In the worst case

the phone will remain in flight mode until the interval expires.

PDP context deactivation (AT*EPPSD). This is necessary

to prevent excessive data costs. For example, when the phone

is roaming and the user wants to deactivate packet-data.

Emergency calls (ATD 911;) must always work due to

regulations.

G. Profiling benign AT Command Usage

To determine useful and working intervals and thresholds

for configuring our filter we monitored the AT commands

we are interested in. To determine how often and when

these commands are issued we set the intervals to 86,400

seconds (one day). Thus, the filter only counts the number of

commands but never actually blocks anything. Table I shows

AT command usage in general. Note, that the call-forwarding

command (AT+CCFC) is issued multiple times at the point

when the user opens the call-forwarding settings screen. This

is because the phone always queries the network for the

settings since these can be changed from multiple places.

When the user changes a setting an additional command is

issued. Followed by querying the state again. Therefore, the

call-forwarding filter has to take into account that at a certain

time multiple commands are executed in a row.

In the Appendix we included an example output of our filter

log right after the phone booted.

Command # When Why

AT+CFUN 2 Boot Flight mode. Normal mode.

AT+CFUN 1 Use Switch to GSM-only.

AT+CDGMNT 1 Boot Set PDP configuration.

AT*EPPSD 1 Boot Activate PDP context.

AT+CMGS 1 Use Send a SMS message.

ATD 1 Use Issue a voice call.

AT+CCFC 3 Use Query forwarding settings.

AT+CCFC 2 Use Set a call-forwarding.

Table I
AT COMMANDS ISSUED DURING RUNTIME.

VII. EVALUATION

We developed a set of test applications to simulate rogue

behavior such as updating call-forwarding settings or changing

the PDP context. We further acquired a sample of an actual

Premium Rate SMS Trojan for the Android platform to test

against a real-world malware. Below we first describe our



evaluation environment – our small GSM network, followed

by the evaluation of our protection system against the threats

we described in Section III.

A. Our GSM Test Network

Our setup consists of a small GSM network that is based

on an ip.access nanoBTS. The nanoBTS is managed by

OpenBSC [34]. Our network is operated in a Faraday cage,

where we conduct all our experiments safely. OpenBSC comes

with additional components that provide a SGSN and a GGSN,

which allows to operate a packet-data network in addition to

the voice and SMS services. The setup allows us to monitor all

relevant aspects of the cellular network. Such as PDP context

establishment and incoming and outgoing SMS traffic.

Through the use of this environment we can test and verify

our implementation.

B. Limiting the Call-forwarding Attack

The call-forwarding attack as described by [30] is based

on insertion of call-forwarding settings by hijacked phones.

Their attack requires 2,500 Transactions Per Seconds (TPS)

for low traffic networks and up to 30,000 TPS for high traffic

networks.

The victim phones issue AT+CCFC commands to configure

and enable call-forwarding. The authors of [30] calculated

that on average a command takes 4.7 seconds to complete,

meaning one can issue up to 12 commands per minute. Thus,

they require 11,750 bots to perform the attack on a low traffic

network.

4.7 seconds ∗ 2, 500 TPS = 11, 750 hosts

For our initial experiment we configured the filter to allow

5 commands per minute. We chose this configuration because

the Android call-forwarding configuration panel issues 3 com-

mands when it is started. These commands query the network

for the current state as shown in Table I. The command that

causes high load (enable call-forwarding) is only issued when

the user changes a setting. After changing the setting the

network is queried again. We, therefore, set the threshold =

5. With this setting the botnet’s size already has to more than

double in order to successfully perform the attack. Figure 7

shows the necessary size increase of the botnet described in

[30] to perform the attack if the zombie phones are equipped

with our protection system.

To further improve the protection provided by our system

we can increase the interval of the call-forwarding filter,

resulting in an even lower number of commands per minute.

For example, allowing just 10 call-forwarding commands over

a period of 10 minutes of time. Such a threshold results in

1 command per minute on average, which is reasonable for

normal usage.

C. Limiting PDP Context Changes

To limit the number of PDP context changes we have to me-

diate two different commands. The commands are described

in Section VI-C where the side effects of these commands
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Figure 7. The increase in size of the botnet necessary to maintain the 2,500
TPS with our protection system in place.

are presented. The side effect, which must be detected by our

system, is switching the baseband mode between GSM-only,

3G-only, and GSM+3G. Calculating the threshold for PDP

context changes is straightforward.

Defining pt as the threshold for PDP context changes, et
as the threshold for AT*EPPSD commands, and ct as the

threshold for AT+CFUN commands, yields

pt = et + ct.

The graph in Figure 8 shows the number of possible PDP

context changes depending on the settings of pt. Without any

rate limiting applied, 30 changes per minute is the maximum

possible.
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Figure 8. The graph shows the number of PDP context changes possible
based on how many commands are allowed per minute. The last point at 288
PDP context per day is based on 0.2 commands per minute.

D. SMS Trojan

We installed the FakePlayer-A [9] premium SMS Trojan

to a test phone equipped with our protection system. The

Trojan is built to send a SMS message to a premium rate



number to steal money from the victim. We closely monitor the

log output of our filter to determine what happens. In addition

we also monitor the phone’s behavior on our private GSM

network, to see if it actually sends any SMS message or not.

The Trojan tries to send an SMS message to the number

3353. As this number is short (only 4 digits) it is detected by

our Short Code Detector. Extensive analysis of this Trojan [9]

determined that the Trojan sends a SMS to either 3353 or

798657. However, we only observed attempts to 3353 in our

lab. Below is an excerpt from our filter log.

AT+CMGS=15

00010004813335000006b71cce56bb01

number: 3353

short number >3353< detected, could be premium

filterd: filtered returned: 0

filterd: blocking

00010004813335000006b71cce56bb01

E. SMS Controlled Botnets

SMS controlled botnets such as [19], [33] send and receive

SMS messages for their command and control channel. Since

this work focuses on outgoing signaling traffic we decided to

only look at outgoing traffic, from the phone to the network.

To prevent botnet communication we enabled our Binary

Payload Detector together with the rate limiting for the

AT+CMGS command (the command to send SMS messages).

The rate limiter will only prevent the phone from sending

binary SMS messages at a high rate. Binary SMS messages

are rarely sent by the user since these are mostly used by

applications. Furthermore, the most common usage of binary

SMS are messages that are received by the phone (e.g. as part

of MMS). Text messages on the other side are often used in

an instant messaging scheme with a high rate of outgoing and

incoming messages. Therefore, blocking text messages will

be more complicated since they would need to be analyzed

thoroughly before one is able to safely block them.

VIII. RELATED WORK

Related work falls into four categories. First, security en-

hancements for smartphones. Second, virtualization on smart-

phones. Third, Android specific security extensions. Forth,

infrastructure-based security enhancements for cellular net-

works.

Traynor et al. summarize in [28] the lack of security features

on mobile and smartphones and discuss possible solutions.

Part of their work presents SELinux [18] as means of access

control of system resources. But the authors come to the

conclusion that such an approach is infeasible. In our work,

we directly address the specific problems of signaling attacks.

We not only propose a solution, but fully implemented a

prototype and evaluated it. Mulliner et al. [20] build a label

based tracking system that tracks a process’ access to network

interfaces to limit future access to other network resources

such as the cellular modem. The SEIP [35] architecture

uses D-Bus in combination with SELinux to enforce access

policies for applications accessing various system resources

on a smartphone.

Selhorst et al. [26] describe a Trusted Mobile Desktop

prototype that, similar to our approach, uses a micro kernel

together with multiple virtualized Linux instances. In their

setup, a so-called User Linux partition drives the baseband

and runs the user’s applications. A separate component signs

and encrypts SMS. The encrypted SMS is then sent via the

User Linux’s baseband driver. They do not provide means for

protecting the cellular network from malicious behavior of the

User Linux partition. Schmidt et al. [25] describe how a trusted

mobile platform can be built on a trustworthy platform. The

authors employ the Turaya security kernel to run a virtualized

legacy operating system (Linux) side-by-side with multiple

trusted engines. They do not propose to control network

interfaces. Klein et al. [14] design and implement seL4. In

their work the authors demonstrate that the implementation

of a modern third-generation micro kernel can be formally

verified to match its specification. VMware [22] ported their

virtualization software to the Android platform. However, this

port runs a virtualized guest version of Android on top of a

host Android. Additionally, our solution is based on a micro

kernel and has a significantly smaller trusted computing base.

Enck et al. build TaintDroid [8] a taint tracking based

security and privacy enhancement for Android. TaintDroid

is able to track which data an application accessed. The

MockDroid [6] Android enhancement adds the possibility to

selectively mock specific features such as Internet connectivity.

Thus applications cannot use specific functionalities even if

they actually are available. In [7], [5] the authors build user

land domain isolation systems for Android in order to protect

against malware attacks. These systems do not protect against

malware that has root level access, in comparison, our solution

specifically protects against this threat.

Previous work on protecting cellular phone networks has

targeted other attack vectors such as [29] that investigates

countermeasures for preventing resource exhaustion attacks

against cellular phone networks carried out over the Internet.

IX. CONCLUSIONS AND FUTURE WORK

We designed and implemented our protection system called

the virtual modem to protect cellular network infrastructure

from hijacked smartphones. The virtual modem mediates all

signaling traffic from the smartphone OS to the baseband

and thus protects the cellular network. The implementation is

based on running Android and our virtual modem in isolated

partitions on top of a micro kernel. Our solution is independent

from the baseband and thus supports wide adoption.

We evaluated our implementation using real mobile phone

hardware that we connect to our own GSM network. Our

GSM network allows us to monitor all relevant activities of

the phone. Part of the evaluation was installing a real-world

Trojan on the device. The Trojan was successfully launched,

but our virtual modem prevented the fraudulent access to the

cellular network.



Signaling attacks are a serious threat and recognized as such

by the GSMA. The evaluation of our protection system showed

that it can effectively prevent these attacks and thus protect

cellular core networks. In addition it protects the end-user.

We believe that protecting the baseband from the smartphone

OS is the necessary next step in the evolution of securing

smartphones. Thus leading towards creating more responsible

devices that participate in the growing mobile communication

world.

A. Future Work

Our virtual modem can be enhanced with the following

functionality.

VPN Gateway The modem can establish access to VPNs in a

way that even a rooted Android cannot access the key material.

Advanced Intrusion Detection/Prevention We can enhance

our IP filter with logic to detect and prevent attacks against

the smartphone as well as against the operator.

Policy Update Infrastructure The virtual modem can

include an update infrastructure to allow the operator to

update the filtering policies. Such an update would be

performed transparently to the user.

Secure GUI With the addition of a secure graphical user

interface, we can implement a dialog that enables the virtual

modem to ask the user for admission of premium SMS and

calls. To make sure that Android malware cannot mimic the

admission dialog, or automatically send the confirmation

input, the dialog must be presented in a way that does not

depend on Android for input. Doing so requires virtualization

of the graphics and input hardware.

Hardware Virtualization Porting the Android kernel to our

micro kernel requires a significant amount of work. When

hardware support for CPU virtualization becomes available on

smartphones, it can both reduce the amount of modifications

to the Android kernel, and may improve the performance of

our Android VM.
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APPENDIX

Figure 9. One of our Aava devices. A debug board is attached to the right
and provides a serial line.

current time: 3793

APN[ 1] : "internet.t-mobile"

state : 1

count : 1

last : 3793

cfg : 3793

APN current : 1

APN switch count : 1

APN switch interval (policy) : 86400

APN switch threshold (policy): 6

APN switch last : 3793

CALLFWD[0] interval (policy) : 86400

CALLFWD[0] threshold (policy): 5

CALLFWD[0] last : 0

CALLFWD[0] count : 0

CALLFWD[1] interval (policy) : 86400

CALLFWD[1] threshold (policy): 5

CALLFWD[1] last : 0

CALLFWD[1] count : 0

CALLFWD[2] interval (policy) : 86400

CALLFWD[2] threshold (policy): 5

CALLFWD[2] last : 0

CALLFWD[2] count : 0

CALLFWD[3] interval (policy) : 86400

CALLFWD[3] threshold (policy): 5

CALLFWD[3] last : 0

CALLFWD[3] count : 0

... ...

CALLFWD[5] count : 0

GSMONLY interval (policy) : 86400

GSMONLY threshold (policy): 4

GSMONLY last : 3778

GSMONLY count : 2

GSMONLY mode : 1

BINSMS interval (policy) : 86400

BINSMS threshold (policy): 1

BINSMS last : 0

BINSMS count : 0

SMSSHORT count : 0

Figure 10. The status of our AT command filter after booting the device for
AT command profiling.


