
BabelCrypt: The Universal Encryption Layer for
Mobile Messaging Applications

Ahmet Talha Ozcan1, Can Gemicioglu2, Kaan Onarlioglu3,
Michael Weissbacher3, Collin Mulliner3, William Robertson3, and Engin Kirda3

1 Middle East Technical University, Ankara
talha.ozcan@metu.edu.tr

2 Sabanci University, Istanbul
cgemicioglu@sabanciuniv.edu,

3 Northeastern University, Boston
{onarliog,mw,crm,wkr,ek}@ccs.neu.edu

Abstract. Internet-based mobile messaging applications have become a
ubiquitous means of communication, and have quickly gained popularity
over cellular short messages (SMS). Unfortunately, from a security point
of view, free messaging services do not guarantee the privacy of users.
For example, free messaging providers can record and store exchanged
messages indefinitely to collect information about specific users. Moreover,
these messages can be accessed by criminals who gain access to social
media accounts. In this paper, we introduce BabelCrypt, a system that
addresses the problem of automatically retrofitting arbitrary mobile
chat applications with end-to-end encryption. Our system works by
transparently interfacing with the original client applications supplied by
the respective service providers. It does not require any modification to the
individual applications, nor does it require any knowledge or customization
for specific chat applications. BabelCrypt is able to automatically inject
control messages in-band, using the underlying application’s message
exchange mechanism, and thus supports running arbitrarily complex
encryption protocols such as OTR. We successfully used BabelCrypt
with a number of popular messaging applications including Facebook
Messenger, WhatsApp, and Skype. Our evaluation shows that BabelCrypt
provides end-to-end security for arbitrary messaging applications while
satisfactorily preserving the original user experience of the messaging
application.

Keywords: Mobile messaging, Android security, privacy

1 Introduction

Internet-based mobile messaging applications that provide services such as the
discovery of other users and exchanging text messages with them have become a
ubiquitous means of communication. They have quickly gained popularity over
cellular short messages (SMS) as such services are often free of charge, even when



roaming and switching to a different cellular network operator, and are available
anywhere Internet connectivity is available.

Internet-based mobile messaging has also experienced huge growth in recent
years due to the availability of inexpensive smartphones and tablets. The strong
ties between text communication and smartphones become even more apparent
when one considers that popular services (e.g., WhatsApp and Viber) only provide
client software for smartphones and tablets. Today, many online social media
services such as Facebook, Microsoft, Google, and Yahoo have followed the trend
and are providing their own text-based communication service. Furthermore, a
large number of video and voice communication services such as Skype and Viber
are also providing chat-style text messaging features.

Unfortunately, there are also significant downsides of these free and always
available communication services from a security point of view; in particular,
user privacy suffers. While the underlying communication can easily be secured
against eavesdropping by utilizing TLS, the service provider has full, unfettered
access to every message exchanged through their infrastructure. Service providers
can (ab)use this power to record and store exchanged messages indefinitely; for
example, to collect information about specific users and serve them targeted
ads [7]. Moreover, these messages can be accessed by rogue employees of the
service provider, or criminals who gain access to social media accounts. Service
providers can also be subpoenaed to hand over the stored data to government
and law enforcement agencies that request access to a user’s communication logs.

So far, there have been several attempts to secure Internet-based mobile
communication. For instance, users of certain chat clients can install and use
encryption plugins such as Off-the-Record (OTR) [9] to protect their privacy.
However, these chat clients support only a limited set of communication protocols.
In addition, many messaging services (e.g., Skype and Viber) use custom protocols
that constantly evolve, forcing the user to update the chat client frequently, thus
cutting out the development of third-party clients or plugins that support message
encryption. Notably, recent research has proposed Mimesis Aegis [12], a system
that addresses this problem by interposing a conceptual encryption layer between
software and the users interacting with them. However, this approach requires
development of specific logic for each chat client supported, and does not support
automatic injection of messages into the communication channel, rendering it
unable to support cryptographic protocols that involve, for instance, key exchange.

In this paper, we introduce BabelCrypt, a system that addresses the problem
of retrofitting arbitrary mobile chat applications with end-to-end encryption. Our
system works by transparently interfacing with the original client applications
supplied by the respective service providers. It does not require any modification to
the individual applications, nor does it require any knowledge or customization for
specific chat applications. A significant advantage of BabelCrypt over comparable
solutions is that it is also able to automatically inject control messages in-
band, using the underlying application’s message exchange mechanism, and thus
supports running arbitrarily complex encryption protocols such as OTR.



BabelCrypt consists of two core components: an encrypting keyboard that
transparently secures messages typed into the application by a user, and a
decrypting display overlay that automatically analyzes the GUI of the chat
application in real-time and adapts its appearance to mimic that of the underlying
application. As a result, users interact with BabelCrypt in the exact same way
they would with the original application. We show in Section 6 that BabelCrypt
does not have a significant detrimental impact on the user experience and is
easy to use, while providing transparent end-to-end encryption for the exchanged
messages.

We implemented BabelCrypt for the popular Android platform. Our proto-
type implementation works on any Android device that runs Android version 4.x
or later, and does not require any modification to the phone or superuser access
to the operating system.

The main contributions of this paper are the following:

– We introduce BabelCrypt, a system for application-independent end-to-end
encryption for Internet-based mobile text messaging. Our system protects
messages against access by the messaging service providers.

– We show that BabelCrypt works by interfacing with the target chat applica-
tion in the same way a user would, in a transparent manner, and does not
significantly detract from the original user experience. BabelCrypt supports
arbitrary chat applications, and does not require modification to or previ-
ous knowledge of individual applications. When using shared passwords for
encryption, BabelCrypt does not require any setup procedure.

– We propose a technique for automatically injecting messages into the under-
lying chat application’s message exchange system, enabling BabelCrypt to
run cryptographic protocols such as OTR. In this mode, BabelCrypt only
requires a simple one-time initialization routine per-installed application,
only requiring the user to perform two clicks on the screen.

– We evaluate BabelCrypt using a wide range of text-based communication
applications to demonstrate its generic applicability, performance, and us-
ability.

2 Threat Model & Motivation

BabelCrypt aims to protect the confidentiality of communication between users
of text-based online communication services in a transparent manner, without
requiring drastic changes to the user experience or additional development effort.
The threat model we consider for this work is divided into four distinct scenarios
described below.

In the first scenario, we assume that the communication between the messag-
ing application on the smartphone and the service provider can be intercepted
and eavesdropped on by an attacker. This scenario covers possible mistakes in
the usage of cryptographic primitives, which have been documented in previous



work [6]. For example, the application may fail to use transport layer encryption
such as TLS for sensitive messages; otherwise, the application’s use of cryptog-
raphy might be implemented in an unsafe way that allows man-in-the-middle
attacks.

The second scenario involves malicious communication service providers – that
is, service providers that are benign, but that employ a business model based on
monetizing information collected from their users. In our threat model, we assume
that service providers have access to, and may record, all communication carried
out through their infrastructure. They may access and use this information at any
time, for example, to deliver targeted advertisements to their users. In addition,
they may disclose the collected records to other entities, for instance, through
company acquisitions or mergers, or to government and law enforcement agencies
through subpoenas.

In the next scenario, we assume that user accounts may be compromised by an
attacker. Chat services typically record conversations on the user’s device or on
their servers to provide conversation history and to implement a seamless hand-
over between different devices owned by the same user. Therefore, an attacker
can access entire conversation histories through compromised user credentials or
stolen devices.

In the final scenario, we assume that third-party code embedded inside chat
clients may freely intercept user communication. This might be due to malicious
third-party code inclusion exploits, or implemented for benign purposes by the
application developer – for example, to include advertisement libraries that scan
for keywords and display targeted advertisements.

In all above scenarios, BabelCrypt aims to prevent inadvertent disclosure of
users’ communication records, keep their conversations confidential, and protect
their privacy.

3 System Design

The design philosophy of BabelCrypt is to provide chat applications with end-to-
end encryption in a completely transparent and generic manner, both from the
perspective of the user and the underlying application. In particular, our system
should satisfy the following design goals.

(D1) BabelCrypt must ensure that the user experience of interacting with the
underlying chat application is not changed drastically.

(D2) BabelCrypt should be designed in a way that allows underlying chat
application could remain oblivious to the presence of an encryption layer
above it, or that it is transferring encrypted messages.

(D3) BabelCrypt must be independent of the specifics of the underlying chat
application, and of the service provider infrastructure. This includes avoiding
any form of modification to the underlying application’s source code.

To this end, we designed BabelCrypt as a set of components that includes
an extension to the system’s software keyboard, and a GUI overlay over the



Hi Alice

BCD: EF03678ABC01

BCD: EF03678ABC01

BCD: EF03678ABC01

BCD: 748ECDEf982

Hi Alice

Hi Bob 

1 2 3 4 5the user types what the app sees what the app sends what the app receives what the user reads

Fig. 1. The BabelCrypt system at work. The user types a message (1), when pressing
send the keyboard encrypts the message and passes it to the application (2). The
application sends the message (3). The application receives an encrypted message (4)
and the overlay decrypts and displays the message to the user (5). Stages 3 and 4 are
transparent to the user.

chat application screen. Users of chat applications type their messages through
the BabelCrypt keyboard, just like they would interact with an ordinary key-
board, which encrypts the input on the fly and feeds it into the underlying
application (D1). The GUI overlay automatically mimics the display of the chat
application, and shows the decrypted plaintext where the underlying application
would normally display the encrypted message (D1)(D2). During this process,
BabelCrypt operates as an independent layer between the user and the tar-
get application, acting as a cryptographic conduit while remaining oblivious to
both (D3).

Figure 1 provides an overview of BabelCrypt. In the rest of this section, we
will describe the design of the core components of BabelCrypt in more detail.

3.1 BabelCrypt Keyboard

The primary interface between BabelCrypt and the user is the BabelCrypt
keyboard. This component is an enhanced software keyboard that is a substitute
for the operating system’s default keyboard. It functions like a typical keyboard
would, but also makes it possible to encrypt user input on-the-fly when a private
conversation is requested. Using an additional mode switch button added at the
bottom row of the keyboard, the user is able to turn the on-the-fly encryption
on or off so that the same keyboard could be used system-wide as an ordinary
keyboard with applications that do not necessitate encrypted input. The current
mode of operation is indicated by a distinct visual cue – in particular, by changing
the background color of the keyboard so that the user does not accidentally send
unencrypted messages (see Figure 2).

When the encryption mode is on, instead of directly passing key presses to the
underlying application, the BabelCrypt keyboard buffers all input, and displays
it to the user in an auto-complete-bar like “plaintext field”. Only when the user
presses the “Return” or “Send” key is the entered text encrypted, and passed to
the application. This ensures that the plaintext is never exposed to the underlying
applications which may potentially leak them to the service provider without the
user’s knowledge. The aforementioned plaintext field makes it possible for the
user to securely view and edit the text before it is sent, instead of typing blindly.



The keyboard is also tasked with encoding the ciphertext into printable
characters, and splitting it into multiple messages of smaller chunks if necessary
so that the underlying chat application can correctly transfer the encrypted
message to the remote end.

3.2 BabelCrypt Display Overlay

The BabelCrypt display overlay is the component responsible for detecting text
encrypted using BabelCrypt on the screen, and displaying it back to the user in
plaintext.

This component has two main tasks. First, it continuously monitors the
current foreground application window for changes to the GUI, which would
indicate a new sent or received message being displayed. When such a change is
triggered, this component accesses the underlying application’s GUI tree, and
traverses all visible nodes in it searching for encrypted text. Once ciphertext
is found, BabelCrypt decodes it back to its original binary representation and
decrypts it. BabelCrypt then automatically inspects the geometry of the GUI
element that contains the ciphertext, overlays a textbox on top of it, and displays
the decrypted text where it would originally have appeared in the chat application.
In this way, we keep the original look and feel of the application, and do not
change the user experience significantly.

BabelCrypt display overlay is able to perform these tasks thanks to the
Android Accessibility Framework [10]. Using the accessibility API, BabelCrypt
is able to access and inspect the GUI layout of the applications on the screen,
without requiring modifications or the instrumentation of the application code.

Finally, similar to the keyboard component, BabelCrypt displays plaintext
overlays in a distinct color to alert the user to the fact that the message has been
sent encrypted (See Figure 2).

3.3 BabelCrypt Encryption Modes

BabelCrypt is designed with two encryption modes to support different use sce-
narios. Each mode provides different degrees of security guarantees and usability,
allowing the users of the system the flexibility to pick the one that suits their
needs. In this section, we describe these modes in more detail.

Encryption with Shared Secrets In this mode, BabelCrypt uses a basic
shared secret scheme where the exchange of the cryptographic secret is delegated
to the users (e.g., users share a password out of band).

The primary advantage of using this scheme is that no setup is necessary
prior to running BabelCrypt; That is, users simply enter their passwords into a
prompt, a key is derived from the password, and the users can immediately start
exchanging messages. In addition, the communication history can be kept on the
device or on the application servers in an encrypted form for future access by the



user. Finally, it is relatively easy to adapt this scheme to multi-user chat rooms
by simply sharing the password with all involved parties.

Of course, shared secret encryption has the significant disadvantage of provid-
ing less strict security, including no forward secrecy nor authentication. Therefore,
this encryption mode is suitable for users who would like to keep their chat
histories, and would like a quick conversation without any setup process.

Encryption with Key-Agreement Protocols This second encryption mode
allows users to run a cryptographic protocol over the target chat application’s
message exchange mechanism with the help of BabelCrypt. In this way, protocols
of arbitrary complexity can be executed, for example, to perform an authenticated
key exchange.

While the specific properties of such an encryption scheme depends on the
actual protocol used, in general, this encryption mode makes it possible to hold
a private conversation with stricter security guarantees such as authentication
and perfect forward secrecy.

The primary disadvantage of this mode stems from the fact that cryptographic
protocols typically require several steps of message exchanges before a session
key for encryption can be established. However, performing such an exchange
automatically would necessitate either establishing a separate out-of-band com-
munication channel between two BabelCrypt endpoints, or using the in-band
channel where text messages are also exchanged for this purpose. While the
former is impractical, the latter is not directly possible since BabelCrypt does
not have direct and automatic control over the communication channel; it can
only input text into the underlying chat application through the user interacting
with the keyboard.

As a result, in order to use this mode, the user needs to perform a simple
one-time initialization step for every target application prior to using Babel-
Crypt with them. Specifically, the user needs to register with BabelCrypt the
message entry box and the “Send” button of the application, so that BabelCrypt
can subsequently inject protocol messages into the application and send them
automatically without user interaction.

BabelCrypt handles both the task of registering these GUI components,
and injecting messages, through the Android Accessibility Framework. Upon
launching a chat application for the first time, the user needs to press a new “Set”
button placed in the bottom row of the BabelCrypt keyboard which activates the
registration mode. Next, the user touches the message entry box and the “Send”
button on the screen, BabelCrypt intercepts these touch events, translates the
touch coordinates to the corresponding GUI elements, and registers the resource
identifiers corresponding to the message entry box and the button. Later, when
message injection is required by the running protocol, BabelCrypt automatically
traverses the application’s GUI tree, locates the GUI elements corresponding
to the saved identifiers, injects a message into the message entry box, and
programmatically presses the “Send” button. Similarly, on the receiving side,
BabelCrypt overlay traverses the GUI tree to find protocol messages displayed



Fig. 2. An encrypted conversation displayed with BabelCrypt disabled on the left, and
with BabelCrypt enabled on the right. Note that the background color of the keyboard
and the overlay boxes change to indicate that a secure conversation is in progress.

by the chat application, and passes them to the encryption layer. In this way,
after a simple initial setup, arbitrarily complex protocols can be automatically
run without further user interaction.

4 Implementation

In the following, we provide details of our BabelCrypt prototype implementation
and address some of the technical issues we elided in the previous sections.

4.1 Encryption Schemes

BabelCrypt currently supports one concrete encryption scheme for each of the
two encryption modes it supports.

For encryption with shared secrets, we implemented a simple password-derived
key scheme. Specifically, a 256-bit cryptographic key is derived from a pre-shared
password using PBKDF2 with 10000 iterations. The encryption is performed
using AES256 in CBC mode. IV values are transmitted along with the messages
as we describe in the following sections.

For the more complex cryptographic protocol mode, we implemented the
Off-the-Record Messaging (OTR) protocol, a protocol designed specifically for



text-based chat applications. It provides strong security guarantees such as perfect
forward secrecy and deniable authentication, and is a good fit for BabelCrypt’s
security goals. Note that, however, OTR uses session keys that are periodically
discarded, which makes it impossible to retrieve past conversation histories.
OTR also does not support multi-user chat. As such, the simpler shared secret
encryption mode still remains viable in different use cases.

4.2 Message Formats

BabelCrypt employs two different types of messages, data messages and control
messages. Data messages carry encrypted user input, while the control messages
are used for transmitting injected protocol messages.

Data messages could either be as a 3-tuple {BCD, IV,CIPHERTEXT} if
the shared-secret encryption mode, which requires sending the IV together with
the message, is being used. Or, it could be a 2-tuple {BCD,OTRMSG} if OTR
is active. Here, BCD (BabelCrypt Data) is a special sequence that indicates that
the payload of this message should be decrypted and displayed. When traversing
the GUI tree, the BabelCrypt overlay component identifies encrypted user input
by searching for this special tag. Examples of encrypted and decrypted messages
are shown in Figure 2.

Similarly, control messages are formatted as a 3-tuple {BCC, ID,OTRMSG},
where BCC (BabelCrypt Control) is a different sequence tagging control mes-
sages. When the overlay component encounters such a message in the display,
it passes the payload MSG to the encryption layer. Note that this exchange of
control messages is visible in the chat application’s display since control messages
are transmitted through the chat application just like a normal conversation.
Obviously, these messages are not human-readable, and hence, clutter the screen.
Unfortunately, it is not possible for us to remove those messages from the screen
as, for security reasons, the Android accessibility framework does not allow the
modification of the GUI of the underlying applications. Therefore, in order not
to confuse the user, BabelCrypt instead overlays a textbox on the displayed
message, showing a notification informing the user that a cryptographic protocol
is running and the contents of the message should be ignored.

A final issue arises from the fact that chat applications typically display both
the incoming and outgoing messages on the screen. As a result, when a control
message is injected by BabelCrypt into the application, it appears on the screens
of both endpoints. However, control messages should only be seen and processed
by the remote end. In order to prevent the sender from processing the control
message destined for the other end, each control message also includes a randomly
generated ID value. The sender inserts this to a set of IDs that should be ignored
prior to sending the message and, as a result, the overlay component skips this
message when searching for tagged entries on the screen. Similarly, once the
control message is processed at the remote end, it is also inserted into an ignore
list so that the same message is not processed multiple times, for example, when
a user scrolls the screen and a previously processed message is displayed.



5 Limitations

By design, the underlying chat applications are completely oblivious of Babel-
Crypt. However, this can potentially lead to unexpected consequences when
delivering encrypted messages. For instance, an application that does not allow
the transfer of certain characters in the text, that transforms the messages in
some way, or that otherwise has similar restrictions on the message format would
break the integrity of BabelCrypt messages. Hence, the decryption on the remote
end would be impossible. The keyboard component of our system is responsible
for simple text encoding and splitting of messages, and we did not encounter
applications requiring more sophisticated message handling in our tests; however,
this possibility remains.

Another potential usability disadvantage is that some of the application fea-
tures such as searching in the chat history would not be possible with BabelCrypt
since the messages are stored in ciphertext. Likewise, features such as spell
checking that could be performed inside an application need to be moved into
the BabelCrypt keyboard as only the keyboard has access to plaintext input.

As previously noted, for secure communication protocols requiring automatic
message injection, BabelCrypt necessitates a one-time setup during which the
user interacts with the application’s text entry box and message send button,
and the system registers their GUI resource identifiers. While this approach
makes BabelCrypt resonably robust against cosmetic changes to the underlying
application’s GUI, changes to resource identifiers may require the user to repeat
the setup step, causing a minor disruption of the user experience.

Finally, BabelCrypt does not address the problem of sharing encrypted images,
voice, or videos. This problem is outside the scope of this work.

6 Evaluation

In this section we describe our evaluation of BabelCrypt and show that it is
compatible with prominent chat applications, that it does not incur a noticeable
performance overhead, and that it does not have a significant negative impact
on the user experience.

6.1 Applicability

In order to demonstrate that BabelCrypt works correctly with popular chat
applications, we installed and extensively tested a set of popular applications
found in the Android Marketplace. We verified that both shared password
encryption and OTR modes correctly work in various applications such as the
Facebook Messenger, WhatsApp, Tango, WeChat, Viber, and Skype. We note
that although BabelCrypt is targeted at online messaging applications, it also
works with SMS applications that display the messages as conversation flows.
For instance, we verified that BabelCrypt works correctly with Go SMS [2].



Table 1. The results of a user study carried out with 40 participants, which demonstrate
the usability of BabelCrypt.

Lower bound on
Metric Min Q1 Median Mean Q3 Max 95% confidence interval

Simplicity 75.00 75.00 100.00 91.88 100.00 100.0 88.09
Appearance 50.00 75.00 75.00 75.62 81.25 100.0 70.04
Likability 25.00 75.00 75.00 74.38 75.00 100.0 70.14

6.2 Performance

We were unable to reliably measure message round-trip times in our evaluation
setup, due to factors such as network delays that lead to unpredictable latency
in message delivery. Consequently, we opted to measure the performance by
benchmarking the critical performance path of our system.

BabelCrypt has two execution paths that incur an overhead over the original
chat application: the keyboard, and the display overlay. The keyboard is respon-
sible for encrypting a single chunk of user input. However, the overlay component
needs to traverse the entire GUI tree on each window content change, check GUI
node contents for a match with the special BabelCrypt-tagged messages, and
then process them, which typically includes decrypting several messages displayed
on the screen at once. Thus, we chose to benchmark the overlay component since
it represents the slowest path of execution in our system.

We have designed a macro benchmark that covers all of the above tasks
performed by the BabelCrypt overlay. We triggered the whole process by manually
sending encrypted messages to our test device from another remote device, and
then measured the time for the overlay to finish detecting and processing all
messages displayed on the screen. In our test setup, we used Facebook Messenger
as the underlying chat application, and ran it on an off-the-shelf HTC One X
smartphone. We have repeated the experiment 100 times and calculated the
average runtimes. The results show that BabelCrypt incurred a performance
overhead of 150.1 ms on the average, with a standard deviation of 69.0 ms,
which indicates that the performance impact would not be detrimental to the
user experience and that they would not have noticed a significant difference.

6.3 Usability

In order to evaluate the usability of the system and determine the impact of
BabelCrypt on user experience, we conducted a user study with 40 participants.
We confirmed that all of the participants are smartphone users, and that they
are familiar with using at least one online messaging application.

We define our criteria for usability using three separate metrics. Simplicity
is defined as the ease of interaction with the chat application, appearance is
the perceived visual aesthetics of the application’s user interface, and, finally,



likability captures the overall subjective experience of the user when interacting
with the chat application.

In our study, we provided each participant with a Samsung Galaxy S3 smart-
phone loaded with Facebook Messenger, and asked them to exchange messages
with a remote user. An experiment observer was tasked with responding to the
participant’s messages using another device, so that the participant can hold a
realistic conversation with a human. The participants performed this task first
with the vanilla messaging application, and then repeated the process with Babel-
Crypt enabled. They were then given an exit survey and asked to compare their
experience with the messaging application in the two experiments. Specifically,
they were asked three questions to compare the BabelCrypt-enabled system to
the original application for each of our usability metrics defined above, and rate
their experience on a 5-point Likert scale, where a higher score indicates a positive
opinion (e.g., that BabelCrypt is as easy to use as the original application) and
a lower score indicates a negative response (e.g., that BabelCrypt is very hard to
use). After collecting user responses, we have normalized the points to a value
between 0 and 100 to calculate a score for each usability metric. Finally, we
computed the average scores, and analyzed the results to calculate the lower
bound on a 95% confidence interval as to represent the worst-case scores. These
results and five-number summaries of the collected data are presented in Table 1.

These results show that, BabelCrypt provides a degree of simplicity that is
similar to the original messaging application. For the remaining two metrics, user
feedback remains well above average, demonstrating that BabelCrypt does not
have a significant negative impact on the user experience.

7 Related Work

The concept of confidential communication is not new, and solutions such as
Pretty Good Privacy (PGP) [8] have been available for many years. PGP allows
the encryption of arbitrary data, and it is most suitable for the encryption
of email contents and attachments. Standalone systems such as PGP have
good security properties, but they unfortunately suffer from poor usability.
That is, users need to be familiar with the concept of public-key cryptography,
and often need to install plugins that interface with the messaging application.
Furthermore, if the application does not support a plugin interface, integration
becomes difficult. To overcome these issues, other secure communication solutions
have been developed. In the following, we discuss various systems that provide
comparable solutions to BabelCrypt, and discuss the differences as well as the
advantages and disadvantages.

There are several secure-messaging systems that were created specifically
for smartphones, such as TextSecure [13], Threema [16], ChatSecure [15], and
SilentCircle [14]. All of these services have been specifically designed to provide
secure communication, but are standalone solutions. That is, users have to adjust
to a new service and application (often with a new GUI), they have to install
new software, and most importantly, they can only securely communicate with



contacts that are also using this service. In comparison, BabelCrypt has been
designed to integrate with existing legacy services and the corresponding mobile
applications. Therefore, the user can simply install BabelCrypt on her phone
and continue to use existing applications such as WhatsApp and Skype without
any disruption, or the need to add new contacts from scratch. However, our
solution shares the above systems’ limitation that all communicating parties need
to install BabelCrypt on their devices.

Some chat clients, such as Pidgin [3] and Audium [1], come with a plugin
architecture that allows third parties to develop application-specific plugins.
Hence, security plugins such as Off-the-Record (OTR) [9] can be used to encrypt
the communication between users even if the original protocol does not provide
security features. Unfortunately, however, many popular messaging applications
on smartphones (e.g., Viber, WhatsApp) do not provide a plugin architecture.
BabelCrypt bridges this gap on the Android platform, and is able to secure
arbitrary text-based messaging applications in a generic fashion. In other words,
BabelCrypt can be seen as a universal plugin that is intended to work with any
existing smartphone application.

In an alternative approach, repackaging-based systems such as Aurism [17],
Dr. Android [11], I-ARM [5], and Bluebox [4] modify the original application
binary in order to add privacy features such as message encryption. Repackaging
solutions have the advantage that they run inside the application process, and
thus, in theory, can completely integrate with the target application. Unfortu-
nately, though, in practice, such solutions are often not very effective due to the
high complexity of the messaging applications. Furthermore, the repackaging
process has to be redone for every update of the target application, and these
applications are sometimes be protected against reverse engineering attempts
using obfuscation and other anti-reversing techniques. In comparison, BabelCrypt
does not require any modification to the targeted messaging applications, and
thus, works independently of the complexity of the underlying application. In
addition, our solution is unlikely to be affected by application updates since
we interact with the target application through the system keyboard, and by
accessing the application GUI through the use of standard Android platform
features.

A recent, and one of the conceptually closest systems to BabelCrypt is
Mimesis Aegis [12]. Mimesis Aegis also aims to provide a solution that can work
with arbitrary messaging applications on smartphones. The approach provides
services such as message encryption and decryption and can provide a secure
communication environment. However, it has the shortcoming that application-
specific code needs to be developed for each application the user wishes to use
(e.g., WhatsApp is not supported in the prototype as the authors have not
implemented the application-specific GUI code). In contrast, BabelCrypt aims
to be more generic, and works out-of-the-box with any arbitrary text-messaging
application on a smartphone without the need to develop application-specific
code. Moreover, a notable advantage of BabelCrypt over comparable solutions
is that it is also able to automatically inject control messages in-band, using



the underlying application’s message exchange mechanism, and thus, supports
running arbitrarily complex encryption protocols such as OTR.

Recently, TextSecure and WhatsApp announced a collaboration to provide
end-to-end security for messages exchanged using the WhatsApp mobile appli-
cation and messaging service. While we laud this as a positive development for
secure online communications, we also note that – to our knowledge – there are
no plans to make WhatsApp’s implementation of the TextSecure protocol open
source or otherwise available for third party auditing. Therefore, BabelCrypt
can provide an additional layer of assurance for privacy-concious users in this or
similar scenarios.

8 Conclusion

Internet-based mobile messaging applications have become a ubiquitous and
highly popular means of communication on mobile devices. Such services are
often free-of-charge, and are available anywhere Internet connectivity is possible.
Moreover, Internet-based mobile messaging has shown a significant growth in
recent years due to the availability of inexpensive smartphones and tablets.
Unfortunately, these messaging applications come at a cost in terms of privacy:
Although the transport of the messages can be secured by the use of protocols
such as TLS and are generally protected against man-in-the-middle attacks, the
service provider can still (ab)use its power to record and store the exchanged
messages indefinitely (e.g., to serve targeted ads to their users).

In this paper, we presented BabelCrypt, a generic, automated privacy-
enhancing system that addresses the problem of retrofitting arbitrary mobile
chat applications with end-to-end encryption. Our system works by transpar-
ently interfacing with the original client applications supplied by the respective
service providers. BabelCrypt does not require modifications to the individual
applications, nor does it require knowledge of or customization for specific chat
applications. Compared to similar, existing systems, BabelCrypt has the advan-
tage that it is able to automatically inject control messages in-band, using the
underlying applications message exchange mechanism. Thus, it supports running
arbitrarily complex encryption protocols such as OTR for applications that have
not been designed with an open API (e.g., WhatsApp). Furthermore, BabelCrypt
does not significantly alter the original user experience of the messaging appli-
cations, and thus provides a valuable and practical generic next step towards
usable end-to-end security for mobile communications.

Acknowledgment This work was supported by the Office of Naval Research
(ONR) under grant N000141210165, National Science Foundation (NSF) under
grant CNS-1116777, and Secure Business Austria. The authors would like to
thank Erik-Oliver Blass for insightful discussions and valuable feedback.



References

1. Audium. https://www.audium.im
2. Go SMS. http://gosms.goforandroid.com/
3. Pidgin, the universal chat client. https://www.pidgin.im
4. Bluebox Security: Bluebox. https://www.bluebox.com
5. Davis, B., Sanders, B., Khodaverdian, A., Chen, H.: I-ARM-Droid: A Rewriting

Framework for In-App Reference Monitors for Android Applications. In: IEEE
Workshop on Mobile Security Technologies (2012)

6. Egele, M., Brumley, D., Fratantonio, Y., Kruegel, C.: An Empirical Study of
Cryptographic Misuse in Android Applications. In: ACM Conference on Computer
and Communications Security (2013)

7. Feloni, R.: Facebook Sued For Allegedly Using Your Private Messages To Trig-
ger Ads. http://www.businessinsider.com/facebook-sued-for-allegedly-usin
g-your-private-messages-to-trigger-ads-2014-1 (January 2014)

8. Garfinkel, S.: PGP: Pretty good Privacy. O’Reilly Media, Inc (1995)
9. Goldberg, I.: Off-the-Record Messaging (OTR). https://otr.cypherpunks.ca/

10. Google: Accessibility — Android Developers. https://developer.android.com/g
uide/topics/ui/accessibility/

11. Jeon, J., Micinski, K.K., Vaughan, J.A., Fogel, A., Reddy, N., Foster, J.S., Millstein,
T.: Dr. Android and Mr. Hide: Fine-grained Permissions in Android Applications.
In: ACM Workshop on Security and Privacy in Smartphones and Mobile Devices
(2012)

12. Lau, B., Chung, S., Song, C., Jang, Y., Lee, W., Boldyreva, A.: Mimesis Aegis: A
Mimicry Privacy Shield. In: USENIX Security Symposium (2014)

13. Open Whisper Systems: TextSecure. https://whispersystems.org
14. Silent Circle: Silent Text. https://www.silentcircle.com
15. The Guardian Project: ChatSecure. https://guardianproject.info/apps/chats

ecure

16. Threema GmbH: Threema. https://www.threema.ch
17. Xu, R., Säıdi, H., Anderson, R.: Aurasium: Practical Policy Enforcement for Android

Applications. In: USENIX Security Symposium (2012)


